Genetic mapping of Foxb1-cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus

نویسندگان

  • Tianyu Zhao
  • Nora Szabó
  • Jun Ma
  • Lingfei Luo
  • Xunlei Zhou
  • Gonzalo Alvarez-Bolado
چکیده

The hypothalamus is a brain region with vital functions, and alterations in its development can cause human disease. However, we still do not have a complete description of how this complex structure is put together during embryonic and early postnatal stages. Radially oriented, outside-in migration of cells is prevalent in the developing hypothalamus. In spite of this, cell contingents from outside the hypothalamus as well as tangential hypothalamic migrations also have an important role. Here we study migrations in the hypothalamic primordium by genetically labeling the Foxb1 diencephalic lineage. Foxb1 is a transcription factor gene expressed in the neuroepithelium of the developing neural tube with a rostral expression boundary between caudal and rostral diencephalon, and therefore appropriate for marking migrations from caudal levels into the hypothalamus. We have found a large, longitudinally oriented migration stream apparently originating in the thalamic region and following an axonal bundle to end in the anterior portion of the lateral hypothalamic area. Additionally, we have mapped a specific expansion of the neuroepithelium into the rostral diencephalon. The expanded neuroepithelium generates abundant neurons for the medial hypothalamus at the tuberal level. Finally, we have uncovered novel diencephalon-to-telencephalon migrations into septum, piriform cortex and amygdala.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of neuroepithelial Sonic hedgehog in hypothalamic patterning.

The hypothalamus is a region of the diencephalon with particularly complex patterning. Sonic hedgehog (Shh), encoding a protein with key developmental roles, shows a peculiar and dynamic diencephalic expression pattern. Here, we use transgenic strategies and in vitro experiments to test the hypothesis that Shh expressed in the diencephalic neuroepithelium (neural Shh) coordinates tissue growth ...

متن کامل

Clones in the chick diencephalon contain multiple cell types and siblings are widely dispersed.

The thalamus, hypothalamus and epithalamus of the vertebrate central nervous system are derived from the embryonic diencephalon. These regions of the nervous system function as major relays between the telencephalon and more caudal regions of the brain. Early in development, the diencephalon morphologically comprises distinct units known as neuromeres or prosomeres. As development proceeds, mul...

متن کامل

The COUP-TF nuclear receptors regulate cell migration in the mammalian basal forebrain.

Cells migrate via diverse pathways and in different modes to reach their final destinations during development. Tangential migration has been shown to contribute significantly to the generation of neuronal diversity in the mammalian telencephalon. GABAergic interneurons are the best-characterized neurons that migrate tangentially, from the ventral telencephalon, dorsally into the cortex. Howeve...

متن کامل

Patterning the zebrafish diencephalon by the conserved zinc-finger protein Fezl.

The forebrain constitutes the most anterior part of the central nervous system, and is functionally crucial and structurally conserved in all vertebrates. It includes the dorsally positioned telencephalon and eyes, the ventrally positioned hypothalamus, and the more caudally located diencephalon [from rostral to caudal: the prethalamus, the zona limitans intrathalamica (ZLI), the thalamus and t...

متن کامل

Foxb1 Regulates Negatively the Proliferation of Oligodendrocyte Progenitors

Oligodendrocyte precursor cells (OPC), neurons and astrocytes share a neural progenitor cell (NPC) in the early ventricular zone (VZ) of the embryonic neuroepithelium. Both switch to produce either of the three cell types and the generation of the right number of them undergo complex genetic regulation. The components of these regulatory cascades vary between brain regions giving rise to the un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2008