Vietoris-Rips and Cech Complexes of Metric Gluings

نویسندگان

  • Michal Adamaszek
  • Henry Adams
  • Ellen Gasparovic
  • Maria Gommel
  • Emilie Purvine
  • Radmila Sazdanovic
  • Bei Wang
  • Yusu Wang
  • Lori Ziegelmeier
چکیده

We study Vietoris–Rips and Čech complexes of metric wedge sums and metric gluings. We show that the Vietoris–Rips (resp. Čech) complex of a wedge sum, equipped with a natural metric, is homotopy equivalent to the wedge sum of the Vietoris–Rips (resp. Čech) complexes. We also provide generalizations for certain metric gluings, i.e. when two metric spaces are glued together along a common isometric subset. As our main example, we deduce the homotopy type of the Vietoris–Rips complex of two metric graphs glued together along a sufficiently short path. As a result, we can describe the persistent homology, in all homological dimensions, of the Vietoris–Rips complexes of a wide class of metric graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Vietoris-Rips complexes of a circle

Given a metric space X and a distance threshold r > 0, the Vietoris–Rips simplicial complex has as its simplices the finite subsets of X of diameter less than r. A theorem of JeanClaude Hausmann states that if X is a Riemannian manifold and r is sufficiently small, then the Vietoris–Rips complex is homotopy equivalent to the original manifold. Little is known about the behavior of Vietoris–Rips...

متن کامل

Statement of Current Research

I am interested in computational topology and geometry, combinatorial topology, and topology applied to data analysis and to sensor networks. My current research: §1. Advances the theory of Vietoris–Rips simplicial complexes. Given a set of points X sampled from a metric space M , what information can one recover about M? One approach is to build a Vietoris–Rips simplicial complex, which depend...

متن کامل

Extremal Betti Numbers of Rips Complexes

Upper bounds on the topological Betti numbers of Vietoris-Rips complexes are established, and examples of such complexes with high Betti

متن کامل

Approximate Cech Complexes in Low and High Dimensions

Čech complexes reveal valuable topological information about point sets at a certain scale in arbitrary dimensions, but the sheer size of these complexes limits their practical impact. While recent work introduced approximation techniques for filtrations of (Vietoris-)Rips complexes, a coarser version of Čech complexes, we propose the approximation of Čech filtrations directly. For fixed dimens...

متن کامل

Approximating persistent homology for a cloud of $n$ points in a subquadratic time

The Vietoris-Rips filtration for an n-point metric space is a sequence of large simplicial complexes adding a topological structure to the otherwise disconnected space. The persistent homology is a key tool in topological data analysis and studies topological features of data that persist over many scales. The fastest algorithm for computing persistent homology of a filtration has time O(M(u) +...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.06224  شماره 

صفحات  -

تاریخ انتشار 2017