Highly extensible bio-nanocomposite fibers.

نویسندگان

  • Akhilesh K Gaharwar
  • Patrick J Schexnailder
  • Avinash Dundigalla
  • James D White
  • Cristina R Matos-Pérez
  • Joshua L Cloud
  • Soenke Seifert
  • Jonathan J Wilker
  • Gudrun Schmidt
چکیده

Here, we show that a poly(ethylene oxide) polymer can be physically cross-linked with silicate nanoparticles (Laponite) to yield highly extensible, bio-nanocomposite fibers that, upon pulling, stretch to extreme lengths and crystallize polymer chains. We find that both, nanometer structures and mechanical properties of the fibers respond to mechanical deformation by exhibiting strain-induced crystallization and high elongation. We explore the structural characteristics using X-ray scattering and the mechanical properties of the dried fibers made from hydrogels in order to determine feasibility for eventual biomedical use and to map out directions for further materials development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Extensible Bio-Nanocomposite Films with Direction-Dependent Properties

The structure and mechanical properties of bio-nanocomposite films made from poly(ethylene oxide) (PEO) that is physically cross-linked with silicate nanoparticles, Laponite, are investigated. Direction-dependent mechanical properties of the films are presented, and the effect of shear orientation during sample preparation on tensile strength and elongation is assessed. Repeated mechanical defo...

متن کامل

Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation.

A novel bio nanocomposite of Carboxymethyl Starch (CMS)-Chitosan (CS)-Montmorillonite (MMT) was developed for Curcumin delivery. To improve Curcumin entrapment into Cs-CMS-MMT, different ratios of Chitosan (Cs), Carboxymethyl Starch (CMS) and MMT were used. Particle size and Curcumin entrapment efficiency (EE) were highly affected by different formulation variables. Polysaccharide concentration...

متن کامل

Microfibrillated cellulose and new nanocomposite materials: a review

Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject of continuing research and are commercially interesting in terms of new products from the pulp and paper ...

متن کامل

Collagen based magnetic nanocomposites for oil removal applications

A stable magnetic nanocomposite of collagen and superparamagnetic iron oxide nanoparticles (SPIONs) is prepared by a simple process utilizing protein wastes from leather industry. Molecular interaction between helical collagen fibers and spherical SPIONs is proven through calorimetric, microscopic and spectroscopic techniques. This nanocomposite exhibited selective oil absorption and magnetic t...

متن کامل

Review on Green Polymer Nanocomposite and Their Applications

The present paper study about the green polymer nanocomposites (GPNCs), through this paper we study of bio-reinforced composites in automotive, construction, packaging and medical applications due to increased concern for environmental sustainability. In the study of Green polymer nanocomposites we learned unique properties of combining the advantages of natural fillers and organic polymers. Pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Macromolecular rapid communications

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2011