Endocytosis of EGFR requires its kinase activity and N-terminal transmembrane dimerization motif.

نویسندگان

  • Raimond Heukers
  • Jeroen F Vermeulen
  • Farzad Fereidouni
  • Arjen N Bader
  • Jarno Voortman
  • Rob C Roovers
  • Hans C Gerritsen
  • Paul M P van Bergen En Henegouwen
چکیده

EGFR signaling is attenuated by endocytosis and degradation of receptor-ligand complexes in lysosomes. Endocytosis of EGFR is known to be regulated by multiple post-translational modifications. The observation that prevention of these modifications does not block endocytosis completely, suggests the involvement of other mechanism(s). Recently, receptor clustering has been suggested to induce internalization of multiple types of membrane receptors. However, the mechanism of clustering-induced internalization remains unknown. We have used biparatopic antibody fragments from llama (VHHs) to induce EGFR clustering without stimulating tyrosine kinase activity. Using this approach, we have found an essential role for the N-terminal GG4-like dimerization motif in the transmembrane domain (TMD) for clustering-induced internalization. Moreover, conventional EGF-induced receptor internalization depends exclusively on this TMD dimerization and kinase activity. Mutations in this dimerization motif eventually lead to reduced EGFR degradation and sustained signaling. We propose a novel role for the TMD dimerization motif in the negative-feedback control of EGFR. The widely conserved nature of GG4-like dimerization motifs in transmembrane proteins suggests a general role for these motifs in clustering-induced internalization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of i...

متن کامل

Control of epidermal growth factor receptor endocytosis by receptor dimerization, rather than receptor kinase activation.

Given that ligand binding is essential for the rapid internalization of epidermal growth factor receptor (EGFR), the events induced by ligand binding probably contribute to the regulation of EGFR internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. Whereas the initial results are controversial regarding the role o...

متن کامل

Architecture and Membrane Interactions of the EGF Receptor

Dimerization-driven activation of the intracellular kinase domains of the epidermal growth factor receptor (EGFR) upon extracellular ligand binding is crucial to cellular pathways regulating proliferation, migration, and differentiation. Inactive EGFR can exist as both monomers and dimers, suggesting that the mechanism regulating EGFR activity may be subtle. The membrane itself may play a role ...

متن کامل

Tyrosine kinase activity of epidermal growth factor receptor is regulated by GM3 binding through carbohydrate to carbohydrate interactions.

Epidermal growth factor receptor (EGFR), an N-glycosylated transmembrane protein with an intracellular kinase domain, undergoes dimerization by ligand binding resulting in activation of the kinase domain and phosphorylation. Ganglioside GM3 containing sialyllactose inhibits the tyrosine kinase activity of EGFR through carbohydrate to carbohydrate interactions (CCI) between N-glycans with GlcNAc...

متن کامل

Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs.

The beta-amyloid peptide (Abeta) is the major constituent of the amyloid core of senile plaques found in the brain of patients with Alzheimer disease. Abeta is produced by the sequential cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases. Cleavage of APP by gamma-secretase also generates the APP intracellular C-terminal domain (AICD) peptide, which might be involved i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 126 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2013