An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set

نویسنده

  • Ronald L. Graham
چکیده

Step Find a point Pin the plane w%ch is in &he In&$x of Cl-l(s). At worst, this can be done in clfl sQp9 by te dting 3 element subsets of S for collineti@, discarding middle p&n& of collinear rets ar5b bq@rig when the fust noncollinear set (if there i# or&j. &y X, y arrcf z, is found. P can be chosen to I&E the centroid oC the triangle formed by X, y and z. Sfq 2: Express each si E S in polar coordinates th origin P and 8 = 0 in the direction of zu~ arhitnry fixed half-line L from P. This canversion can be done in c2n operations ior some rimed constant

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modification of Graham’s algorithm for determining the convex hull of a finite planar set

In this paper, in our modification of Graham scan for determining the convex hull of a finite planar set, we show a restricted area of the examination of points and its advantage. The actual run times of our scan and Graham scan on the set of random points shows that our modified algorithm runs significantly faster than Graham’s one.

متن کامل

Sweep Line Algorithm for Convex Hull Revisited

Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...

متن کامل

7. Acknowledgments 8. References 6. Concluding Remarks

Optimal algorithms for computing the minimum distance between two finite planar sets, " Proc. A fast algorithm for the planar convex hull problem, " internal manuscript, [25] B. K. Bhattacharya and G. T. Toussaint. " A time-and-storage efficient implementation of an optimal planar convex hull algorithm, " Divide and conquer for linear expected time, " Inform. A linear algorithm for finding the ...

متن کامل

Algorithms for distance problems in planar complexes of global nonpositive curvature

CAT(0) metric spaces and hyperbolic spaces play an important role in combinatorial and geometric group theory. In this paper, we present efficient algorithms for distance problems in CAT(0) planar complexes. First of all, we present an algorithm for answering single-point distance queries in a CAT(0) planar complex. Namely, we show that for a CAT(0) planar complex K with n vertices, one can con...

متن کامل

Space-efficient planar convex hull algorithms

A space-efficient algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. We describe four space-efficient algorithms for computing the convex hull of a planar point set.

متن کامل

A First Algorithm: Planar Convex Hulls

We will start with a simple geometric problem, the computation of the convex hull of a finite set of points in the plane. We will formulate a basic algorithm that constructs the planar hull in quadratic time. It accesses the input points through a single predicate, the orientation predicate for three points. We will see how this predicate can be realized by a simple formula in the point coordin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1972