Mechanism of alcohol oxidation mediated by copper(II) and nitroxyl radicals.

نویسندگان

  • Bradford L Ryland
  • Scott D McCann
  • Thomas C Brunold
  • Shannon S Stahl
چکیده

2,2'-Bipyridine-ligated copper complexes, in combination with TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl), are highly effective catalysts for aerobic alcohol oxidation. Considerable uncertainty and debate exist over the mechanism of alcohol oxidation mediated by Cu(II) and TEMPO. Here, we report experimental and density functional theory (DFT) computational studies that distinguish among numerous previously proposed mechanistic pathways. Oxidation of various classes of radical-probe substrates shows that long-lived radicals are not formed in the reaction. DFT computational studies support this conclusion. A bimolecular pathway involving hydrogen-atom-transfer from a Cu(II)-alkoxide to a nitroxyl radical is higher in energy than hydrogen transfer from a Cu(II)-alkoxide to a coordinated nitroxyl species. The data presented here reconcile a collection of diverse and seemingly contradictory experimental and computational data reported previously in the literature. The resulting Oppenauer-like reaction pathway further explains experimental trends in the relative reactivity of different classes of alcohols (benzylic versus aliphatic and primary versus secondary), as well as the different reactivity observed between TEMPO and bicyclic nitroxyls, such as ABNO (ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Alcohol Oxidation Mediated by TEMPO‐like Nitroxyl Radicals

The electrocatalytic oxidation of alcohols mediated by TEMPO-like nitroxyl radicals is an economically and industrially viable method that will shortly find commercial application in the synthesis of valued substances including active pharmaceutical ingredients (APIs), valued natural product derivatives, fine chemicals, and valued nanomaterials.

متن کامل

Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation.

Homogeneous Cu/TEMPO catalyst systems (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) have emerged as some of the most versatile and practical catalysts for aerobic alcohol oxidation. Recently, we disclosed a (bpy)Cu(I)/TEMPO/NMI catalyst system (NMI = N-methylimidazole) that exhibits fast rates and high selectivities, even with unactivated aliphatic alcohols. Here, we present a mechanistic inve...

متن کامل

Removal of Chelated Copper by TiO2 Photocatalysis: Synergetic Mechanism Between Cu (II) and Organic Ligands

UV/TiO2 photocatalysis of chelated copper in aqueous solutions has been performed starting from Cu(II)-tartaric acid, Cu(II)-citric acid, Cu(II)-EDTA and Cu(II)-DTPA,in the presence of oxygen and at acidic pH. The photocatalytic reaction obeys first-order kinetic equation. The influence of Cu(II) on photocatalytic oxidation of organic ligands and how the various organics will affe...

متن کامل

Cataliticoxidation of benzyl alcohol by Cu(II) polypyridyl complexes

Two polypyridyl copper(II) complexes, [Cu(phen)(phen-dione)Cl]Cl (1) and [Cu(bpy) (phen-dione)Cl]Cl (2), (where Phen =1,10-phenanthroline, bpy =2,2'-bipyridine and Phen-dione = 1,10-phenanthroline-5,6-dione), were used as efficient catalysts for the oxidation of benzyl alcohol to benzaldehyde. The effects of various parameters such as reaction temperature, reaction time, etc. were studied. The ...

متن کامل

Investigation of Catalytic Activity of Bis[2-(p-tolyliminomethyl)phenolato] Copper(II) Complex in the Selective Oxidation of Alcohols with Hydrogen Peroxide

In this article, the catalytic activity of bis[2-(p-tolyliminomethyl)phenolato] copper(II) complex was studied, for the first time, in the oxidation of various primary and secondary alcohols to the corresponding aldehydes or ketones. The effect of different solvent was studied in the oxidation of benzyl alcohol and methanol was chosen as the reaction medium. Also the effect of different oxidant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 136 34  شماره 

صفحات  -

تاریخ انتشار 2014