Benzene and Haze Formation in the Polar Atmosphere of Jupiter

نویسندگان

  • Ah-San Wong
  • Yuk L. Yung
  • A. James Friedson
چکیده

[1] Jupiter has a large magnetosphere that episodically precipitates large amounts of energy into the polar atmosphere, giving rise to intense auroras [Clarke et al., 1996; Grodent et al., 2000]. An important consequence of this energy influx is the production of a dark haze [Pryor and Hord, 1991], the formation mechanism of which was hitherto poorly known. Recent observations of benzene on Jupiter [Bézard et al., 2001; Flasar, 2002] provide new clues for a chemical and aerosol model for the formation of heavy hydrocarbon aerosols. The chemistry begins with the destruction of methane by energetic particles, followed by neutral and ion reactions, ultimately leading to the formation of benzene and other complex hydrocarbons, including multi-ring compounds which subsequently condense. High temperatures and effective eddy mixing engendered by the auroras enhance the formation of heavy hydrocarbons and aerosols. This mechanism may be relevant in the atmospheres of Saturn and extrasolar giant planets, and is an example of how a planetary magnetosphere may influence the chemical composition and climate forcing of the upper atmosphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jupiter: Aerosol Chemistry in the Polar Atmosphere.

Aromatic compounds have been considered a likely candidate for enhanced aerosol formation in the polar region of Jupiter. We develop a new chemical model for aromatic compounds in the Jovian auroral thermosphere/ionosphere. The model is based on a previous model for hydrocarbon chemistry in the Jovian atmosphere and is constrained by observations from Voyager, Galileo, and the Infrared Space Ob...

متن کامل

Electronic properties studies of Benzene under Boron Nitride nano ring field

In this study, B12N12 Nano ring has been selected because it consist of four 6-side rings and polar bonds B-N which in comparison with non-polar bonds C-C, is more suitable for the study of the absorption of other compounds. So reactivity and stability of Benzene alone and in the presence B12N12 nano ring field checked. To determine the non-bonded interaction energies between Benzene and B12N12...

متن کامل

Electronic properties studies of Benzene under Boron Nitride nano ring field

In this study, B12N12 Nano ring has been selected because it consist of four 6-side rings and polar bonds B-N which in comparison with non-polar bonds C-C, is more suitable for the study of the absorption of other compounds. So reactivity and stability of Benzene alone and in the presence B12N12 nano ring field checked. To determine the non-bonded interaction energies between Benzene and B12N12...

متن کامل

Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra

Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets, due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet’s geometric albedo spectrum and how it may affect the direct imaging results of the Wide Field Infrared Survey Telescope (WFIRST), a planned NASA space telescope. For temperate (250 K<Teq<700 K) Jupiter-...

متن کامل

The role of photochemistry in Titan s atmospheric chemistry

Experimental studies were performed to simulate the action of long wavelength solar UV light on Titan s atmosphere. The experiments were carried out in a photochemical flow reactor using a mixture of gases representative of Titan s atmosphere at 70 north latitude (Titan s north pole) in the winter. The solid analog of Titan s haze formed has optical properties comparable to that determined for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003