Current and voltage clamp studies of the spike medium afterhyperpolarization of hypoglossal motoneurons in a rat brain stem slice preparation.

نویسندگان

  • R Lape
  • A Nistri
چکیده

Whole-cell patch clamp recordings were performed on hypoglossal motoneurons (HMs) in a brain stem slice preparation from the neonatal rat. The medium afterhyperpolarization (mAHP) was the only afterpotential always present after single or multiple spikes, making it suitable for studying its role in firing behavior. At resting membrane potential (-68.8 +/- 0.7 mV), mAHP (23 +/- 2 ms rise-time and 150 +/- 10 ms decay) had 9.5 +/- 0.7 mV amplitude, was suppressed in Ca(2+)-free medium or by 100 nM apamin, and reversed at -94 mV membrane potential. These observations suggest that mAHP was due to activation of Ca(2+)-dependent, SK-type K(+) channels. Carbachol (10-100 microM) reversibly and dose dependently blocked the mAHP and depolarized HMs (both effects prevented by 10 microM atropine). Similar mAHP block was produced by muscarine (50 microM). In control solution a constant current pulse (1 s) induced HM repetitive firing with small spike frequency adaptation. When the mAHP was blocked by apamin, the same current pulse evoked much higher frequency firing with strong spike frequency adaptation. Carbachol also elicited faster firing and adapting behavior. Voltage clamp experiments demonstrated a slowly deactivating, apamin-sensitive K(+) current (I(AHP)) which could account for the mAHP. I(AHP) reversed at -94 mV membrane potential, was activated by depolarization as short as 1 ms, decayed with a time constant of 154 +/- 9 ms at -50 mV, and was also blocked by 50 microM carbachol. These data suggest that mAHP had an important role in controlling firing behavior as clearly demonstrated after its pharmacological block and was potently modulated by muscarinic receptor activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-activated K+ currents of hypoglossal motoneurons in a brain stem slice preparation from the neonatal rat.

Whole cell, patch-clamp recordings were performed on motoneurons of the hypoglossus nucleus in a brain stem slice preparation from the neonatal rat brain. The aim was to investigate transient outward currents activated by membrane depolarization under voltage clamp conditions. In a Ca2+-free medium containing tetrodotoxin and Cs+, depolarizing voltage commands from a holding potential of -50 mV...

متن کامل

Properties and function of low- and high-voltage-activated Ca2+ channels in hypoglossal motoneurons.

Calcium influx through voltage-gated Ca2+ channels plays an important role in neuronal function. In a thin-slice preparation of neonatal rat hypoglossal motoneurons (HMs) we recorded Ba2+ currents through voltage-gated Ca2+ channels using the whole-cell configuration of the patch-clamp technique. We found that HMs have low-voltage-activated (LVA) and at least three types of high-voltage-activat...

متن کامل

Time-dependent changes in input resistance of rat hypoglossal motoneurons associated with whole-cell recording.

The effect of cellular dialysis associated with whole-cell recording was studied in 24 developing hypoglossal motoneurons in a rat brainstem slice preparation. In all cases, establishing whole-cell continuity with the electrode solution resulted in an increase in the input resistance measured in current clamp. The mean magnitude of this increase was 39.7% and the time course of the maximum effe...

متن کامل

Contribution of persistent sodium currents to spike-frequency adaptation in rat hypoglossal motoneurons.

In response to constant current inputs, the firing rates of motoneurons typically show a continuous decline over time. The biophysical mechanisms underlying this process, called spike-frequency adaptation, are not well understood. Spike-frequency adaptation normally exhibits a rapid initial phase, followed by a slow, later phase that continues throughout the duration of firing. One possible mec...

متن کامل

Changes during the postnatal development in physiological and anatomical characteristics of rat motoneurons studied in vitro.

The postnatal maturation of rat brainstem (oculomotor and hypoglossal nuclei) and spinal motoneurons, based on data collected from in vitro studies, is reviewed here. Membrane input resistance diminishes with age, but to a greater extent for hypoglossal than for oculomotor motoneurons. The time constant of the membrane diminishes with age in a similar fashion for both oculomotor and hypoglossal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 5  شماره 

صفحات  -

تاریخ انتشار 2000