Disentangling glass and jamming physics in the rheology of soft materials

نویسندگان

  • Atsushi Ikeda
  • Ludovic Berthier
  • Peter Sollich
چکیده

The shear rheology of soft particle systems becomes complex at large density because crowding effects may induce a glass transition for Brownian particles or a jamming transition for non-Brownian systems. Here we successfully explore the hypothesis that the shear stress contributions from glass and jamming physics are ‘additive’. We show that the experimental flow curves measured in a large variety of soft materials (colloidal hard spheres, microgel suspensions, emulsions, aqueous foams) as well as numerical flow curves obtained for soft repulsive particles in both thermal and athermal limits are well described by a simple model assuming that glass and jamming rheologies contribute linearly to the shear stress, provided that the relevant scales for time and stress are correctly identified in both sectors. Our analysis confirms that the dynamics of colloidal hard spheres is uniquely controlled by glass physics while aqueous foams are only sensitive to jamming effects. We show that for micron-sized emulsions both contributions are needed to successfully account for the flow curves, which reveal distinct signatures of both phenomena. Finally, for two systems of soft microgel particles we show that the flow curves are representative of the glass transition of colloidal systems, and deduce that microgel particles are not well suited to studying the jamming transition experimentally.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear and nonlinear rheology of dense emulsions across the glass and the jamming regimes.

We discuss the linear and nonlinear rheology of concentrated microscale emulsions, amorphous disordered solids composed of repulsive and deformable soft colloidal spheres. Based on recent results from simulation and theory, we derive quantitative predictions for the dependences of the elastic shear modulus and the yield stress on the droplet volume fraction. The remarkable agreement with experi...

متن کامل

Unified study of glass and jamming rheology in soft particle systems.

We explore numerically the shear rheology of soft repulsive particles at large volume fraction. The interplay between viscous dissipation and thermal motion results in multiple rheological regimes encompassing Newtonian, shear-thinning, and yield stress regimes near the "colloidal" glass transition when thermal fluctuations are important, crossing over to qualitatively similar regimes near the ...

متن کامل

Vortex jamming in superconductors and granular rheology

We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dy...

متن کامل

Critical scaling near jamming transition for frictional granular particles.

The critical rheology of sheared frictional granular materials near jamming transition is numerically investigated. It is confirmed that there exists a true critical density which characterizes the onset of the yield stress and two fictitious critical densities which characterize the scaling laws of rheological properties. We find the existence of a hysteresis loop between two of the critical d...

متن کامل

Diverging viscosity and soft granular rheology in non-Brownian suspensions.

We use large scale computer simulations and finite-size scaling analysis to study the shear rheology of dense three-dimensional suspensions of frictionless non-Brownian particles in the vicinity of the jamming transition. We perform simulations of soft repulsive particles at constant shear rate, constant pressure, and finite system size and carefully study the asymptotic limits of large system ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013