Systematic evaluation of convolution neural network advances on the Imagenet

نویسندگان

  • Dmytro Mishkin
  • Nikolay Sergievskiy
  • Jiri Matas
چکیده

The paper systematically studies the impact of a range of recent advances in CNN architectures and learning methods on the object categorization (ILSVRC) problem. The evalution tests the influence of the following choices of the architecture: non-linearity (ReLU, ELU, maxout, compatability with batch normalization), pooling variants (stochastic, max, average, mixed), network width, classifier design (convolutional, fully-connected, SPP), image pre-processing, and of learning parameters: learning rate, batch size, cleanliness of the data, etc. The performance gains of the proposed modifications are first tested individually and then in combination. The sum of individual gains is bigger than the observed improvement when all modifications are introduced, but the ”deficit” is small suggesting independence of their benefits. We show that the use of 128x128 pixel images is sufficient to make qualitative conclusions about optimal network structure that hold for the full size Caffe and VGG nets. The results are obtained an order of magnitude faster than with the standard 224 pixel images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interleaved Group Convolutions for Deep Neural Networks

In this paper, we present a simple and modularized neural network architecture, named primal-dual group convolutional neural networks (PDGCNets). The main point lies in a novel building block, a pair of two successive group convolutions: primal group convolution and dual group convolution. The two group convolutions are complementary: (i) the convolution on each primal partition in primal group...

متن کامل

Optimization on Product Submanifolds of Convolution Kernels

Recent advances in optimization methods used for training convolutional neural networks (CNNs) with kernels, which are normalized according to particular constraints, have shown remarkable success. This work introduces an approach for training CNNs using ensembles of joint spaces of kernels constructed using different constraints. For this purpose, we address a problem of optimization on ensemb...

متن کامل

Deep Epitomic Convolutional Neural Networks

Deep convolutional neural networks have recently proven extremely competitive in challenging image recognition tasks. This paper proposes the epitomic convolution as a new building block for deep neural networks. An epitomic convolution layer replaces a pair of consecutive convolution and max-pooling layers found in standard deep convolutional neural networks. The main version of the proposed m...

متن کامل

A generalized ABFT technique using a fault tolerant neural network

In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...

متن کامل

Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification

This paper presents a new version of Dropout called Split Dropout (sDropout) and rotational convolution techniques to improve CNNs’ performance on image classification. The widely used standard Dropout has advantage of preventing deep neural networks from overfitting by randomly dropping units during training. Our sDropout randomly splits the data into two subsets and keeps both rather than dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2017