Incremental Dictionary Learning for Unsupervised Domain Adaptation

نویسندگان

  • Boyu Lu
  • Rama Chellappa
  • Nasser M. Nasrabadi
چکیده

Domain adaptation (DA) methods attempt to solve the domain mismatch problem between source and target data. In this paper, we propose an incremental dictionary learning method where some target data called supportive samples are selected to assist adaptation. The idea is partially inspired by the bootstrapping-based methods [1, 3], which choose from the target domain some samples and add them into source domain for retraining the classifier. However, the suitable sample selection and stopping criteria for DA setting is a tricky problem. For the sample selection criteria, we choose supportive samples that are close to the source domain, so that they act as a bridge to connect the two domains and reduce the domain mismatch. More sepecifically, given the source dictionary D, we select the target samples that minimize the reconstruction error when represented by D. Then we augment the source domain by adding supportive samples and retrain the dictionary. For the stopping criteria, we guarantee that the domain mismatch decreases monotonically during adaptation. This is realized by checking whether adding new supportive samples will reduce the domain dissimilarity after each iteration. The proposed approach is shown in Fig. 1. Supportive Samples Selection: We select the supportive samples using W (k+1) by solving the following optimization problem:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

Dictionary-Based Domain Adaptation Methods for the Re-identification of Faces

Re-identification refers to the problem of recognizing a person at a different location after one has been captured by a camera at a previous location. We discuss re-identification of faces using the domain adaptation approach which tackles the problem where data in the target domain (different location) are drawn from a different distribution as the source domain (previous location), due to di...

متن کامل

Incremental Adversarial Domain Adaptation

Continuous appearance shifts such as changes in weather and lighting conditions can impact the performance of deployed machine learning models. Unsupervised domain adaptation aims to address this challenge, though current approaches do not utilise the continuity of the occurring shifts. Many robotic applications exhibit these conditions and thus facilitate the potential to incrementally adapt a...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015