Exploring Crossing Fibers of the Brain's White Matter Using Directional Regions of Interest
نویسندگان
چکیده
Diffusion magnetic resonance imaging (dMRI) is a medical imaging method that can be used to acquire local information about the structure of white matter pathways within the human brain. By applying computational methods termed fiber tractography on dMRI data, it is possible to estimate the location and extent of respective nerve bundles (white matter pathways). Visualizing these complex white matter pathways for neuro applications is still an open issue. Hence, interactive visualization techniques to explore and better understand tractography data are required. In this paper, we propose a new interaction technique to support exploration and interpretation of white matter pathways. Our application empowers the user to interactively manipulate manually segmented, boxor ellipsoid-shaped regions of interest (ROIs) to selectively display pathways that pass through specific anatomical areas. To further support flexible ROI design, each ROI can be assigned a Boolean logic operator and a fiber direction. The latter is particularly relevant for kissing, crossing or fanning regions, as it allows the neuroscientists to filter fibers according to their direction within the ROI. By precomputing all white matter pathways in the whole brain, interactive ROI placement and adjustment are possible. The proposed fiber selection tool provides ultimate flexibility and is an excellent approach for fiber tract selection, as shown for some real-world examples. Andreas Graumann AG Visual Computing, University of Konstanz, e-mail: [email protected] Mirco Richter AG Visual Computing, University of Konstanz, e-mail: [email protected] Christopher Nimsky Dept. of Neurosurgery, University Hospital Marburg, e-mail: [email protected] Dorit Merhof Institute of Imaging & Computer Vision, RWTH Aachen University e-mail: [email protected]
منابع مشابه
Assessment of Diffusion Anisotropy of White Matter in Areas of the Brain with crossing fibers: A simulation study
Introduction: We present a model of simulation of diffusion in white matter. This model has been used in Diffusion Weighted Imaging researches as a tool for employing cylindrically constrained two-tensor models to identify two independent directions within a voxel and assessing the orientation angle as a parameter that influence on fractional anisotropy. Materials a...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملActivated Fibers: Fiber-Centered Activation Detection in Task-Based FMRI
In task-based fMRI, the generalized linear model (GLM) is widely used to detect activated brain regions. A fundamental assumption in the GLM model for fMRI activation detection is that the brain's response, represented by the blood-oxygenation level dependent (BOLD) signals of volumetric voxels, follows the shape of stimulus paradigm. Based on this same assumption, we use the dynamic functional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016