Density functional theory modeling of chromate adsorption onto ferrihydrite nanoparticles

نویسندگان

  • James D Kubicki
  • Nadine Kabengi
  • Maria Chrysochoou
  • Nefeli Bompoti
چکیده

Density functional theory (DFT) calculations were performed on a model of a ferrihydrite nanoparticle interacting with chromate ([Formula: see text]) in water. Two configurations each of monodentate and bidentate adsorbed chromate as well as an outer-sphere and a dissolved bichromate ([Formula: see text]) were simulated. In addition to the 3-D periodic planewave DFT models, molecular clusters were extracted from the energy-minimized structures. Calculated interatomic distances from the periodic and cluster models compare favorably with Extended X-ray Absorption Fine Structure spectroscopy values, with larger discrepancies seen for the clusters due to over-relaxation of the model substrate. Relative potential energies were derived from the periodic models and Gibbs free energies from the cluster models. A key result is that the bidentate binuclear configuration is the lowest in potential energy in the periodic models followed by the outer-sphere complex. This result is consistent with observations of the predominance of bidentate chromate adsorption on ferrihydrite under conditions of high surface coverage (Johnston Environ Sci Technol 46:5851-5858, 2012). Cluster models were also used to perform frequency analyses for comparison with observed ATR FTIR spectra. Calculated frequencies on monodentate, bidentate binuclear, and outer-sphere complexes each have infrared (IR)-active modes consistent with experiment. Inconsistencies between the thermodynamic predictions and the IR-frequency analysis suggest that the 3-D periodic models are not capturing key components of the system that influence the adsorption equilibria under varying conditions of pH, ionic strength and electrolyte composition. Model equilibration via molecular dynamics (MD) simulations is necessary to escape metastable states created during DFT energy minimizations based on the initial classical force field MD-derived starting configurations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles

Adsorption of NO2 molecule on pristine and N-doped TiO2 anatase nanoparticles have been studied using the density functional theory (DFT) technique. The structural properties (such as bond lengths and bond angles) and the electronic properties (such as density of states, band structures and atomic partial charges) have been computed for considered nanoparticles. The result...

متن کامل

Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles

Adsorption of NO2 molecule on pristine and N-doped TiO2 anatase nanoparticles have been studied using the density functional theory (DFT) technique. The structural properties (such as bond lengths and bond angles) and the electronic properties (such as density of states, band structures and atomic partial charges) have been computed for considered nanoparticles. The result...

متن کامل

Adsorption Behaviors of Curcumin on N-doped TiO2 Anatase Nanoparticles: Density Functional Theory Calculations

The density functional theory (DFT) calculations were used to get information concerning the interaction of curcumin with pristine and N-doped TiO2 anatase nanoparticles. Three adsorption geometries of curcumin over the TiO2 anatase nanoparticles were studied in order to fully exploit the sensing properties of TiO2 nanoparticles. Curcumin molecule adsorbs on the fivefold coordinated titanium si...

متن کامل

Investigation of hydralazine drug adsorption on functionalized single-walled carbon nanotubes by density functional theory (DFT) method

Background: In recent years, advances in nanotechnology presents opportunities to overcome limitations in targeted drug delivery. Nano drug carriers have the ability to change the pharmacokinetics of drugs and can improve efficacy and reduce side effects. The objective of the present work is to study the interaction of Hydralazine with functionalized carbon nanotubes by performing density funct...

متن کامل

First-principles thermodynamic modeling of lanthanum chromate perovskites

Tendencies toward local atomic ordering in (A,A′)(B,B′)O3−δ mixed composition perovskites are modeled to explore their influence on thermodynamic, transport, and electronic properties. In particular, dopants and defects within lanthanum chromate perovskites are studied under various simulated redox environments. (La1−x ,Srx)(Cr1−y ,Fey)O3−δ (LSCF) and (La1−x ,Srx)(Cr1−y ,Ruy)O3−δ (LSCR) are mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2018