Two distinct calcium-dependent mitochondrial pathways are involved in oxidized LDL-induced apoptosis.
نویسندگان
چکیده
OBJECTIVE Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular endothelial cells may contribute to plaque erosion and rupture. We aimed to clarify the relationship between the oxLDL-induced calcium signal and induction of apoptotic pathways. METHODS AND RESULTS Apoptosis was evaluated by biochemical methods, including studies of enzyme activities, protein processing, release of proapoptotic factors, chromatin cleavage, and especially by morphological methods that evaluate apoptosis/necrosis by SYTO-13/propidium iodide fluorescent labeling. The oxLDL-induced sustained calcium rise activated 2 distinct calcium-dependent mitochondrial apoptotic pathways in human microvascular endothelial cells. OxLDLs induced calpain activation and subsequent Bid cleavage and cytochrome C release, which were blocked by calpeptin. Cyclosporin-A inhibited cytochrome C release, possibly by inhibiting the opening of the mitochondrial permeability transition pore (mPTP). Calcineurin, another cyclosporin-sensitive step, was not implicated, because oxLDLs inhibited calcineurin and FK-506 treatment was ineffective. Cytochrome C release in turn induced caspase-3 activation. In addition, oxLDLs triggered release and nuclear translocation of mitochondrial apoptosis-inducing factor through a mechanism dependent on calcium but independent of calpains, mPTP, and caspases. CONCLUSIONS OxLDL-induced apoptosis involves 2 distinct calcium-dependent pathways, the first mediated by calpain/mPTP/cytochrome C/caspase-3 and the second mediated by apoptosis-inducing factor, which is cyclosporin-insensitive and caspase-independent.
منابع مشابه
Insulin-like growth factor-1 receptor activation inhibits oxidized LDL-induced cytochrome C release and apoptosis via the phosphatidylinositol 3 kinase/Akt signaling pathway.
OBJECTIVE We have shown previously that oxidized LDL decreases insulin-like growth factor-1 (IGF-1) and IGF-1 receptor expression in vascular smooth muscle cells and that IGF-1 and IGF-1 receptor expression are reduced in the deep intima of early atherosclerotic lesions. Because oxidized LDL is potentially important for the depletion of vascular smooth muscle cells contributing to plaque destab...
متن کاملMitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids
Mitophagy is a critical cellular process that selectively targets damaged mitochondria for autophagosomal degradation both under baseline conditions and in response to stress preventing oxidative damage and cell death. Recent studies have linked alterations in mitochondria function and reduced autophagy with the development of age-related pathologies. However, the significance of mitochondrial ...
متن کاملMetformin protects against oxidized low density lipoprotein-induced macrophage apoptosis and inhibits lipid uptake
Oxidized low density lipoprotein (ox-LDL)-induced macrophage apoptosis contributes to the formation of atherosclerosis. Metformin, an antidiabetic drug, has been reported to attenuate lipid accumulation in macrophages. In this study, the effects of metformin on ox-LDL-induced macrophage apoptosis were investigated and the mechanisms involved in this process were examined. By performing flow cyt...
متن کاملDietary flavonoids differentially reduce oxidized LDL-induced apoptosis in human endothelial cells: role of MAPK- and JAK/STAT-signaling.
Endothelial apoptosis is a driving force in atherosclerosis development. Oxidized LDL promotes inflammatory and thrombotic processes and is highly atherogenic, as it stimulates macrophage cholesterol accumulation and foam cell formation. This study investigated multiple mitogen-activated protein kinase (MAPK)-responsive death/survival signaling pathways, through which flavonoids of (-)epigalloc...
متن کاملTaurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways.
Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2005