A gate-controlled bidirectional spin filter using quantum coherence.
نویسندگان
چکیده
We demonstrate a quantum coherent electron spin filter by directly measuring the spin polarization of emitted current. The spin filter consists of an open quantum dot in an in-plane magnetic field; the in-plane field gives the two spin directions different Fermi wavelengths resulting in spin-dependent quantum interference of transport through the device. The gate voltage is used to select the preferentially transmitted spin, thus setting the polarity of the filter. This provides a fully electrical method for the creation and detection of spin-polarized currents. Polarizations of emitted current as high as 70% for both spin directions (either aligned or anti-aligned with the external field) are observed.
منابع مشابه
Nuclear Magnetic Resonance Spectroscopy: An Experimentally Accessible Paradigm for Quantum Computing
We present experimental results which demonstrate that nuclear magnetic resonance spectroscopy is capable of efficiently emulating many of the capabilities of quantum computers, including unitary evolution and coherent superpositions, but without attendant wave-function collapse. This emulation is made possible by two facts. The first is that the spin active nuclei in each molecule of a liquid ...
متن کاملThermal effect and role of entanglement and coherence on excitation transfer in a spin chain
We analyze the role of bath temperature, coherence and entanglement on excitation transfer in a spin chain induced by the environment. In Markovian regime, we show that coherence and entanglement are very sensitive to bath temperature and vanish in time in contrary to the case of having zero-temperature bath. That is while, finding the last qubit of the chain in excited state increases by incre...
متن کاملQuantum Teleportation in Quantum Dots System
We present a model of quantum teleportation protocol based on one-dimensional quantum dots system. Three quantum dots with three electrons are used to perform teleportation, the unknown qubit is encoded using one electron spin on quantum dot A, the other two dots B and C are coupled to form a mixed space-spin entangled state. By choosing the Hamiltonian for the mixed spacespin entangled system,...
متن کاملSpintronics and Quantum Computing with Quantum Dots
The creation, coherent manipulation, and measurement of spins in nanostructures open up completely new possibilities for electronics and information processing, among them quantum computing and quantum communication. We review our theoretical proposal for using electron spins in quantum dots as quantum bits. We present singleand two qubit gate mechanisms in laterally as well as vertically coupl...
متن کاملاثرات ناخالصیهای مغناطیسی بر عبور الکترون از یک نانو حلقه کوانتومی
In this paper we study the Aharonov-Bohm oscillations of transmission coefficient for an electron passing through a quantum nanoring with two identical magnetic impurities using quantum waveguide theory. It is shown that the Aharonov-Bohm oscillations are independent of the coupling constant between the electron and magnetic impurities for the singlet spin state of impurities, while for the o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 299 5607 شماره
صفحات -
تاریخ انتشار 2003