Multiple Genes, Tissue Specificity, and Expression-Dependent Modulation Contribute to the Functional Diversity of Potassium Channels in Arabidopsis fhaliana’

نویسندگان

  • Yongwei Cao
  • Julie A. Anderson
  • Nobuyuki Uozumi
چکیده

K+ channels play diverse roles in mediating K+ transport and in modulating the membrane potential in higher plant cells during growth and development. Some of the diversity in K+ channel functions may arise from the regulated expression of multiple genes encoding different K+ channel polypeptides. Here we report the isolation of a nove1 Arabidopsis fhaliana cDNA (AKTZ) that is highly homologous to the two previously identified K+ channel genes, KATl and AKT7. This cDNA mapped to the center of chromosome 4 by restriction fragment length polymorphism analysis and was highly expressed in leaves, whereas AKT7 was mainly expressed in roots. I n addition, we show that diversity in K+ channel function may be attributable to differences i n expression levels. lncreasing KAT7 expression i n Xenopus oocytes by polyadenylation of the KATl mRNA increased the current amplitude and led to higher levels of KATl protein, as assayed in western blots. The increase in KATl expression in oocytes produced shifts in the threshold potentia1 for activation to more positive membrane potentials and decreased half-activation times. These results suggest that different levels of expression and tissue-specific expression of different K+ channel isoforms can contribute to the functional diversity of plant K+ channels. The identification of a highly expressed, leaf-specific K+ channel homolog in plants should allow further molecular characterization of K+ channel functions for physiological K+ transport processes in leaves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple genes, tissue specificity, and expression-dependent modulationcontribute to the functional diversity of potassium channels in Arabidopsis thaliana.

K+ channels play diverse roles in mediating K+ transport and in modulating the membrane potential in higher plant cells during growth and development. Some of the diversity in K+ channel functions may arise from the regulated expression of multiple genes encoding different K+ channel polypeptides. Here we report the isolation of a novel Arabidopsis thaliana cDNA (AKT2) that is highly homologous...

متن کامل

Primary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis

There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...

متن کامل

The Effect of a Detraining After Resistance Training on the Histochemical Expression of Potassium Channels and Mitochondrial Biogenesis of Heart Tissue in Male Rats

Aims: Detraining may affect cardiovascular adaptations. The present study aimed to investigate the effect of a detraining period followed by resistance training on immunohistochemical expression of ATP-sensitive potassium channels and mitochondrial biogenesis of heart tissue in male rats. Methods & Materials: The present study was experimental. Thirty male Wistar rats were randomly divided int...

متن کامل

Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...

متن کامل

Changes in expression of klotho affect physiological processes, diseases, and cancer

Klotho (KL) encodes a single-pass transmembrane protein and is predominantly expressed in the kidney, parathyroid glands, and choroid plexus. Genetic studies on the KL gene have revealed that DNA hypermethylation is one of the major risk factors for aging, diseases, and cancer. Besides, KL exerts anti-inflammatory and anti-tumor effects by regulating signaling pathways and the expression of tar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002