Parallezation Protein Sequence Similarity Algorithms using Remote Method Interface

نویسندگان

  • Mubarak Saif Mohsen
  • Zurinahni Zainol
  • Rosalina Abdul Salam
  • Wahidah Husain
چکیده

One of the major problems in genomic field is to perform sequence comparison on DNA and protein sequences. Executing sequence comparison on the DNA and protein data is a computationally intensive task. Sequence comparison is the basic step for all algorithms in protein sequences similarity. Parallel computing is an attractive solution to provide the computational power needed to speedup the lengthy process of the sequence comparison. Our main research is to enhance the protein sequence algorithm using dynamic programming method. In our approach, we parallelize the dynamic programming algorithm using multithreaded program to perform the sequence comparison and also developed a distributed protein database among many PCs using Remote Method Interface (RMI). As a result, we showed how different sizes of protein sequences data and computation of scoring matrix of these protein sequence on different number of processors affected the processing time and speed, as oppose to sequential processing. Keywords— Protein sequence algorithm, dynamic programming algorithm, multithread

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote Homology Detection Using Local Sequence-Structure Correlations

Remote homology detection refers to the problem of detecting protein homology in cases of low sequence similarity. Existing methods to establish homology relationships via sequence similarity do not work well for these remote homology. In this paper, we present a new method, SVM-HMMSTR, that overcomes the reliance on sequence similarity by taking into consideration the local structure similarit...

متن کامل

Comparing protein sequence-based and predicted secondary structure-based methods for identification of remote homologs.

We have compared a novel sequence-structure matching technique, FORESST, for detecting remote homologs to three existing sequence based methods, including local amino acid sequence similarity by BLASTP, hidden Markov models (HMMs) of sequences of protein families using SAM, HMMs based on sequence motifs identified using meta-MEME. FORESST compares predicted secondary structures to a library of ...

متن کامل

Profile-based direct kernels for remote homology detection and fold recognition

MOTIVATION Protein remote homology detection is a central problem in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for remote homology detection. The performance of these methods depends on how the protein sequences are modeled and on the method used to compute the kernel function between them. RESULTS We...

متن کامل

A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences

The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...

متن کامل

FoldMiner and LOCK 2: protein structure comparison and motif discovery on the web

The FoldMiner web server (http://foldminer.stanford.edu/) provides remote access to methods for protein structure alignment and unsupervised motif discovery. FoldMiner is unique among such algorithms in that it improves both the motif definition and the sensitivity of a structural similarity search by combining the search and motif discovery methods and using information from each process to en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004