Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes.

نویسندگان

  • F Koeppel
  • J F Riou
  • A Laoui
  • P Mailliet
  • P B Arimondo
  • D Labit
  • O Petitgenet
  • C Hélène
  • J L Mergny
چکیده

The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we describe ethidium derivatives that stabilize G-quadruplexes. These molecules were shown to increase the melting temperature of an intramolecular quadruplex structure, as shown by fluorescence and absorbance measurements, and to facilitate the formation of intermolecular quadruplex structures. In addition, these molecules may be used to reveal the formation of multi-stranded DNA structures by standard fluorescence imaging, and therefore become fluorescent probes of quadruplex structures. This recognition was associated with telomerase inhibition in vitro: these derivatives showed a potent anti-telomerase activity, with IC(50) values of 18-100 nM in a standard TRAP assay.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human replication protein A unfolds telomeric G-quadruplexes

G-quadruplex structures inhibit telomerase activity and must be disrupted for telomere elongation during S phase. It has been suggested that the replication protein A (RPA) could unwind and maintain single-stranded DNA in a state amenable to the binding of telomeric components. We show here that under near-physiological in vitro conditions, human RPA is able to bind and unfold G-quadruplex stru...

متن کامل

Structure-based virtual screening of novel natural alkaloid derivatives as potential binders of h-telo and c-myc DNA G-quadruplex conformations.

Several ligands can bind to the non-canonical G-quadruplex DNA structures thereby stabilizing them. These molecules can act as effective anticancer agents by stabilizing the telomeric regions of DNA or by regulating oncogene expression. In order to better interact with the quartets of G-quadruplex structures, G-binders are generally characterized by a large aromatic core involved in π-π stackin...

متن کامل

Heme activation by DNA: isoguanine pentaplexes, but not quadruplexes, bind heme and enhance its oxidative activity

Guanine-rich, single-stranded, DNAs and RNAs are able to fold to form G-quadruplexes that are held together by guanine base quartets. G-quadruplexes are known to bind ferric heme [Fe(III)-protoporphyrin IX] and to strongly activate such bound hemes toward peroxidase (1-electron oxidation) as well as oxygenase/peroxygenase (2-electron oxidation) activities. However, much remains unknown about ho...

متن کامل

G-quadruplexes as sensing probes.

Guanine-rich sequences of DNA are able to create tetrastranded structures known as G-quadruplexes; they are formed by the stacking of planar G-quartets composed of four guanines paired by Hoogsteen hydrogen bonding. G-quadruplexes act as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplexes form a complex with anionic porphyrin hemin and exhibit peroxidase...

متن کامل

Molecular docking based screening of triterpenoids as potential G-quadruplex stabilizing ligands with anti-cancer activity

Triterpenoids isolated from Ganoderma lucidum (GLTs) exhibit a broad spectrum of anti-cancer properties, including anti-proliferative, anti-metastatic and anti-angiogenic activities. Current research studies revealed the role by GLTs in inducing apoptosis and suppression of telomerase activity of cancer cells with much lower toxicity to healthy cells. Compounds selectively binding and stabilizi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 29 5  شماره 

صفحات  -

تاریخ انتشار 2001