Depletion of SHANK2 inhibited the osteo/dentinogenic differentiation potentials of stem cells from apical papilla.

نویسندگان

  • Lijia Guo
  • Luyuan Jin
  • Juan Du
  • Chunmei Zhang
  • Zhipeng Fan
  • Songlin Wang
چکیده

The aim of this study was to investigate the biological function of SHANK2 on the osteo/dentinogenic differentiation potentials of human stem cells from apical papilla (SCAPs). Real-time RT-PCR was used to detect the expression of SHANK2 in human mesenchymal stem cells (MSCs). Small hairpin RNA (shRNA) was used to knockdown the SHANK2 in SCAPs. The knockdown efficiency was determined by real-time RT-PCR and Western Blot. The in vitro osteo/dentinogenic differentiation potentials of SCAPs were investigated using ALP staining, ALP activity, alizarin red staining, quantitative calcium, the expression levels of DSPP, DMP1, RUNX2 and OSX. In vivo transplantation experiments in immunocompromised mice were used to evaluate the capacity of SCAPs to form bone/dentine-like structure. SHANK2 was highly expressed in dental tissue-derived MSCs compared with cells of other origins. Silencing of SHANK2 inhibited the ALP activity, mineralization, and the expressions of DSPP, DMP1, RUNX2 and OSX in SCAPs. Furthermore, in vivo transplantation experiments indicated that knock-down of SHANK2 in SCAPs generated less bone/dentin-like mineralized tissue compared with the control group. The present study demonstrated that depletion of SHANK2 inhibited the osteo/dentinogenic differentiation potentials in SCAPs, explored the new function of SHANK2, and provided useful information to elucidate the molecular mechanism underlying directed differentiation in dental tissue-derived MSCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone demethylase KDM2B inhibits the chondrogenic differentiation potentials of stem cells from apical papilla.

Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. Histone methylation, controlled by histone methyltransferases and demethylases, may play a key role in MSCs differentiation. Previous studies determined that KDM2B can regulate the cell pro...

متن کامل

Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review

Bone tissue engineering is one of the important therapeutic approaches to the regeneration of bones in the entire field of regeneration medicine. Mesenchymal stem cells (MSCs) are actively discussed as material for bone tissue engineering due to their ability to differentiate into autologous bone. MSCs are able to differentiate into different lineages: osteo/odontogenic, adipogenic, and neuroge...

متن کامل

Tooth Regeneration with Stem Cell Sources

Introduction: During the last decade, advances in tissue engineering and stem cell-based tooth regeneration have provided realistic and attractive means of replacing lost or damaged teeth. The first adult stem cells isolated from dental tissues were dental pulp stem cells (DPSCs). When transplanted with hydroxyl apatite/tri calcium phosphate (HA/TCP) powder, they formed a dentin-like structure...

متن کامل

The efficiency of the in vitro osteo/dentinogenic differentiation of human dental pulp cells, periodontal ligament cells and gingival fibroblasts.

Although the primary cell cultures from dental pulp and other oral tissue are frequently used to study osteogenic potential and stem cell responses, few systematic and comparative studies on stemness for the dentinogenic differentiation of these cells have been conducted. In the present study, to investigate the stemness of oral primary cells during extended culture, human adult dental pulp cel...

متن کامل

Effects of Canonical NF-κB Signaling Pathway on the Proliferation and Odonto/Osteogenic Differentiation of Human Stem Cells from Apical Papilla

BACKGROUND INFORMATION NF-κB signaling pathway plays a complicated role in the biological functions of mesenchymal stem cells. However, the effects of NF-κB pathway on the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) remain unclear. The present study was designed to evaluate the effects of canonical NF-κB pathway on the osteo/odontogenic capacity of SCAPs in vitro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Histology and histopathology

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2017