Classification on Herman Rings of Extended Blaschke Equations

نویسندگان

  • David C. Ni
  • Hsin Chin
چکیده

This paper presents some interesting results of numerical analysis of the Extended Blaschke functions, which are constructed by extending Blaschke product. On the complex plane, the convergent domains of the functions form fractal patterns of constrained Herman rings with limited-layered structures, which demonstrate skip-symmetry, symmetry broken, chaos, and degeneracy in conjunction with parameter space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fine Structure of Herman Rings

We study the geometric structure of the boundary of Herman rings in a model family of Blaschke products of degree 3. Shishikura’s quasiconformal surgery relates the Herman ring to the Siegel disk of a quadratic polynomial. By studying the regularity properties of the maps involved, we can transfer McMullen’s results on the fine local geometry of Siegel disks to the Herman ring setting.

متن کامل

AN EXTENDED NOTION OF THE GRADE OF AN IDEAL, AND GORENSTEIN RINGS

In this paper we shall apply modules of generalized fractions to extend the notion of the grade of an ideal, and to obtain characterizations of Gorenstein rings.

متن کامل

On the Configuration of Herman Rings of Meromorphic Functions

We prove some results concerning the possible configurations of Herman rings for transcendental meromorphic functions. We show that one pole is enough to obtain cycles of Herman rings of arbitrary period and give a sufficient condition for a configuration to be realizable.

متن کامل

2 1 M ay 2 00 5 SMALL INJECTIVE RINGS

Let R be a ring, a right ideal I of R is called small if for every proper right ideal K of R, I +K = R. A ring R is called right small injective if every homomorphism from a small right ideal to R R can be extended to an R-homomorphism from R R to R R. Properties of small injective rings are explored and several new characterizations are given for QF rings and P F rings, respectively.

متن کامل

PARA-BLASCHKE ISOPARAMETRIC HYPERSURFACES IN THE UNIT SPHERE Sn+1(1) (II)

Let D = A + λB be the para-Blaschke tensor of the immersion x, where λ is a constant, A and B are the Blaschke tensor and the Möbius second fundamental form of x. A hypersurface x : M 7→ S(1) in the unit sphere S(1) without umbilical points is called a para-Blaschke isoparametric hypersurface if the Möbius form Φ vanishes identically and all of its para-Blaschke eigenvalues are constants. In [1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010