Relative Oscillation Theory for Dirac Operators
نویسندگان
چکیده
We develop relative oscillation theory for one-dimensional Dirac operators which, rather than measuring the spectrum of one single operator, measures the difference between the spectra of two different operators. This is done by replacing zeros of solutions of one operator by weighted zeros of Wronskians of solutions of two different operators. In particular, we show that a Sturm-type comparison theorem still holds in this situation and demonstrate how this can be used to investigate the number of eigenvalues in essential spectral gaps. Furthermore, the connection with Krein’s spectral shift function is established. As an application we extend a result by K.M. Schmidt on the finiteness/infiniteness of the number of eigenvalues in essential spectral gaps of perturbed periodic Dirac operators.
منابع مشابه
Renormalized Oscillation Theory for Dirac Operators
Oscillation theory for one-dimensional Dirac operators with separated boundary conditions is investigated. Our main theorem reads: If λ0,1 ∈ R and if u, v solve the Dirac equation Hu = λ0u, Hv = λ1v (in the weak sense) and respectively satisfy the boundary condition on the left/right, then the dimension of the spectral projection P(λ0,λ1)(H) equals the number of zeros of the Wronskian of u and ...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملOn Perturbations of Quasiperiodic Schrödinger Operators
Using relative oscillation theory and the reducibility result of Eliasson, we study perturbations of quasiperiodic Schrödinger operators. In particular, we derive relative oscillation criteria and eigenvalue asymptotics for critical potentials.
متن کاملRelative Oscillation Theory for Sturm–liouville Operators Extended
We extend relative oscillation theory to the case of Sturm–Liouville operators Hu = r−1(−(pu′)′ + qu) with different p’s. We show that the weighted number of zeros of Wronskians of certain solutions equals the value of Krein’s spectral shift function inside essential spectral gaps.
متن کاملGeneralized Eigenfunctions for critical potentials with small perturbations
We estimate the behavior of the generalized eigenfunctions of critical Dirac operators (which are Dirac operators with eigenfunctions and/or resonances for E = m) under small perturbations in the potential. The results also apply for other differential operators (for example Schrödinger operators).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010