Guiding Sampling-Based Motion Planning by Forward and Backward Discrete Search

نویسنده

  • Erion Plaku
چکیده

This paper shows how to effectively compute collision-free and dynamically-feasible robot motion trajectories from an initial state to a goal region by combining sampling-based motion planning over the continuous state space with forward and backward discrete search over a workspace decomposition. Backward discrete search is used to estimate the cost of reaching the goal from each workspace region. Forward discrete search provides discrete plans, i.e., sequences of neighboring regions to reach the goal starting from low-cost regions. Samplingbased motion planning uses the discrete plans as a guide to expand a tree of collision-free and dynamically-feasible motion trajectories toward the goal. The proposed approach, as shown by the experiments, offers significant computational speedups over related work in solving highdimensional motion-planning problems with dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Sampling and Forecasting With Mobile Sensor Networks

This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information reward associated with sensing paths, the mutual information is adopted to represent the influence of the measurement actions on the reduction of the uncertainty in the ver...

متن کامل

Robot Motion Planning with Dynamics as Hybrid Search

This paper presents a framework for motion planning with dynamics as hybrid search over the continuous space of feasible motions and the discrete space of a low-dimensional workspace decomposition. Each step of the hybrid search consists of expanding a frontier of regions in the discrete space using cost heuristics as guide followed by sampling-based motion planning to expand a tree of feasible...

متن کامل

Heuristic Search for Manipulation Planning

Manipulation problems involving many objects present substantial challenges for planning algorithms due to the high dimensionality and multi-modality of the search space. Symbolic task planners can efficiently construct plans involving many entities but cannot incorporate the constraints from geometry and kinematics. Existing approaches to integrated task and motion planning as well as manipula...

متن کامل

Sampling-based Motion Planning with High-Level Discrete Specifications

Motion planning has generally focused on computing a collision-free trajectory to a goal region. Enhancing the ability of robots in manipulation, automation, medicine, and other areas, however, often requires richer task specifications. Toward this goal, we study the problem of computing a collision-free trajectory that satisfies task specifications given by Finite Automata, STRIPS, Linear Temp...

متن کامل

The GRT Planning System: Backward Heuristic Construction in Forward State-Space Planning

This paper presents GRT, a domain-independent heuristic planning system for STRIPS worlds. GRT solves problems in two phases. In the pre-processing phase, it estimates the distance between each fact and the goals of the problem, in a backward direction. Then, in the search phase, these estimates are used in order to further estimate the distance between each intermediate state and the goals, gu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012