An Empirical Investigation of Predicting Fault Count, Fix Cost and Effort Using Software Metrics

نویسندگان

  • Raed Shatnawi
  • Wei Li
چکیده

Software fault prediction is important in software engineering field. Fault prediction helps engineers manage their efforts by identifying the most complex parts of the software where errors concentrate. Researchers usually study the faultproneness in modules because most modules have zero faults, and a minority have the most faults in a system. In this study, we present methods and models for the prediction of fault-count, fault-fix cost, and fault-fix effort and compare the effectiveness of different prediction models. This research proposes using a set of procedural metrics to predict three fault measures: fault count, fix cost and fix effort. Five regression models are used to predict the three fault measures. The study reports on three data sets published by NASA. The models for each fault are evaluated using the Root Mean Square Error. A comparison amongst fault measures is conducted using the Relative Absolute Error. The models show promising results to provide a practical guide to help software engineers in allocating resources during software testing and maintenance. The cost fix models show equal or better performance than fault count and effort models. Keywords—Software metrics; fault prediction; fix cost; fix effort; regression analysis

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Classifiers in Software Fault-Proneness Prediction

Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...

متن کامل

A New Empirical Model to Increase the Accuracy of Software Cost Estimation (TECHNICAL NOTE)

We can say a software project is successful when it is delivered on time, within the budget and maintaining the required quality. However, nowadays software cost estimation is a critical issue for the advance software industry. As the modern software’s behaves dynamically so estimation of the effort and cost is significantly difficult. Since last 30 years, more than 20 models are already develo...

متن کامل

Rank Approach to Software Defect Prediction

An important goal throughout the cycle of software system development is to search out and fix existing defects as early as attainable. This has abundant to do with software system defects prediction and management. There are square measure primarily two classes among these prediction models. One class is to predict what percentage defects still exist in keeping with the already captured defect...

متن کامل

Comparative Analysis of Random Forests with Statistical and Machine Learning Methods in Predicting Fault-Prone Classes

There are available metrics for predicting fault prone classes, which may help software organizations for planning and performing testing activities. This may be possible due to proper allocation of resources on fault prone parts of the design and code of the software. Hence, importance and usefulness of such metrics is understandable, but empirical validation of these metrics is always a great...

متن کامل

Inheritance-Based Metrics for Predicting Maintenance Effort: An Empirical Study

Inheritance-based metrics are a major component of object-oriented metric suites. Corrective maintenance data of an 82,000-line C++ patient collaborative care system was analyzed. There was no significant correlation between the effort to fix residual faults and three of the four inheritance-based metrics that were included in this study. All the interclass and intraclass metrics displayed a st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016