Hidden orbital polarization in diamond, silicon, germanium, gallium arsenide and layered materials

نویسندگان

  • Ji Hoon Ryoo
  • Cheol-Hwan Park
چکیده

It was previously believed that the Bloch electronic states of non-magnetic materials with inversion symmetry cannot have finite spin polarizations. However, since the seminal work by Zhang et al. (Nat. Phys. 10, 387–393 (2014)) on local spin polarizations of Bloch states in non-magnetic, centrosymmetric materials, the scope of spintronics has been significantly broadened. Here, we show, using a framework that is universally applicable independent of whether hidden spin polarizations are small (e.g., diamond, Si, Ge and GaAs) or large (e.g., MoS2 and WSe2), that the corresponding quantity arising from orbital— instead of spin—degrees of freedom, the hidden orbital polarization is (i) much more abundant in nature since it exists even without spin–orbit coupling and (ii) more fundamental since the interband matrix elements of the site-dependent orbital angular momentum operator determine the hidden spin polarization. We predict that the hidden spin polarization of transition metal dichalcogenides is reduced significantly upon compression. We suggest experimental signatures of hidden orbital polarization from photoemission spectroscopies and demonstrate that the current-induced hidden orbital polarization may play a far more important role than its spin counterpart in antiferromagnetic information technology by calculating the current-driven antiferromagnetism in compressed silicon. NPG Asia Materials (2017) 9, e382; doi:10.1038/am.2017.67; published online 26 May 2017

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the current of UV ray radiation on PIN Silicon photodiode and Gallium Arsenide

The high-energy UV ray radiation on PIN Silicon photodiodes reduces the optimal parameters of these photodiodes. In this paper, by representing a model, we compare the effect of UV dose on the bright current in these two types of photodiodes and confirm the analytic relationships in order to simulate a model with the help of the Silvaco- Atlas software. In this model, Silicon photodiodes and Ga...

متن کامل

Electron spin-phonon interaction symmetries and tunable spin relaxation in silicon and germanium

Compared with direct-gap semiconductors, the valley degeneracy of silicon and germanium opens up new channels for spin relaxation that counteract the spin degeneracy of the inversion-symmetric system. Here the symmetries of the electron-phonon interaction for silicon and germanium are identified and the resulting spin lifetimes are calculated. Room-temperature spin lifetimes of electrons in sil...

متن کامل

18 English

High speed and low power consumption are vital in ICs for high-speed optical communications systems. Some of the competing IC elements in this field include: Si-BJT (Silicon Bipolar Transistor), Si-CMOS (Silicon Field Effect Transistor), SiGe-BJT (Silicon Germanium Bipolar Transistor), GaAs-HBT (Gallium Arsenide Heterobipolar Transistor), GaAs-FET (Gallium Arsenide Field Effect Transistor), and...

متن کامل

Design optimization of an optically drivable heterogeneous MOSFET with silicon compatibility

Optical and electronic devices for optoelectronic integrated circuits have been extensively studied, and now, more efforts for the conversion between optical and electrical signals are accordingly required. In this work, a silicon (Si)-compatible optically drivable III-V-on-Si metal-oxide-semiconductor field-effect transistor (MOSFET) is studied by simulation. The proposed optoelectronic device...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017