Modeling of non-Gaussian array data using cumulants: DOA estimation of more sources with less sensors

نویسندگان

  • Sanyogita Shamsunder
  • Georgios B. Giannakis
چکیده

Multichannel, non-Gaussian linear processes are modeled via direct and inverse cumulant-based methods using noisy, multivariate output data . The proposed methods are theoretically insensitive to additive Gaussian noise (perhaps colored, with unknown covariance matrix), and are guaranteed to uniquely identify the system matrix within a post-multiplication by a permutation matrix . Asymptotically optimal and computationally less intensive modeling criteria are also discussed . Further, it is proved that using higher-than-second-order cumulants, it is possible to estimate more angles-of-arrival (or harmonics) with fewer sensors . The problem of detecting the number of sources (or inputs) using output cumulants only is also addressed . Simulation results show that the proposed algorithms outperform the traditional correlation-based methods . Zusammenfassung . Mehrkanalige, nicht-gaul3ische lineare Prozesse werden mittels direkter and Cumulanten-orientierter Methoden modelliert, wobei verrauschte, multivariate Ausgangsdaten verwcndct werden . Die vorgeschlagenen Verfahren Bind unemplindlich gegenuher additivem GauBrauschen (eventuell gefarht and unit unhekannter Kovarianzmatrix), and man kann garantieren, daB sic die Systemmatrix his auf die nachtragliche Multiplikation mit einer Permutationsmatrix eindeutig identifizieren . Auch asymptotisch optimale and weniger rechenintensive Modellierungskriteriums werden diskutiert . Weiterhin wind bewiesen, dat man durch den Gebrauch von Cumulanten einer Ordering oherhalh von 2 mehr Ankunftswinkel (oder Harmonische) mit weniger Sensoren sehatzen kann . Auch das Problem der Erkennung der Quellen(oder Eingangs-)Anzahl mittels Ausgangs-Cumulanten wird angesprochen . Simulationsergebnisse zeigen, daB die vorgeschlagenen Verfahren die iraditionellen Methoden auf Korrelationsbasis Bbertrefen, Resume, Nous modelisons les processus lineaires multi-canaux non gaussiens a ('aide de methodes directes et inverses bastes stir les cumulants et utilisant des domtees de sortie multi-variees bruitees. Les methodes proposees sont insensihles a on bruit gaussien additif (eventuellemcnt colore et de ntatrice de covariance inconnue) et sent garanties identifier de maniere unique la mail too du systcnte a une post-multiplication par Line matrice de permutation pros . Des criteres de modelisation asymptotiquement optimaux et moms cofteux en charge de calcul soot egalement discutes . De plus, it est prouve que I'utilisation de cumulants d'ordre superieur a deux permet d'estimer plus d'angles d'arrivee (oil d'harmoniques) avec moms de capteurs . Le problcnre de Ia detection du nombre de sources (ou d'entrees) a I'aide de cumulants de sortie uniquement est egalement ahorde . Des resultats de simulation montrent que les algorithmes proposes surclassent les methodes traditionnelles basee sur In correlation .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین جهت منابع با استفاده از زیرفضای کرونکر

This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...

متن کامل

تخمین جهت منابع با استفاده از زیرفضای ختری-رائو

This paper deals with Direction of Arrival (DOA) Estimation using Uniform linear array (ULA) for the case of more sources than sensors in the array processing. Khatri-Rao subspace approach, introduced for DOA estimation for this, in non-stationary signal model. The technique will be shown to be capable to handle stationary signals, too. Identifiability conditions of this approach are addressed....

متن کامل

Underdetermined High-Resolution DOA Estimation: A 2ρth-Order Source-Signal/Noise Subspace Constrained Optimization

For estimating the direction of arrival (DOA)s of non-stationary source signals such as speech and audio, a constrained optimization problem (COP) that exploits the spatial diversity provided by an array of sensors is formulated in terms of a noise-eliminated local th-order cumulant matrix. The COP solution provides a weight vector to the look direction such that it is constrained to the th-ord...

متن کامل

A Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals

In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL...

متن کامل

Suppression of Gaussian noise using cumulants: a quantitative analysis

Higher-Order-Statistics (HOS) are being used in many areas of digital signal processing, e.g. in the eld of array processing. The main aim is often to suppress Gaussian noise. Mostly, the corresponding algorithms are applied to short data blocks, because only then the stationarity of the data needed for cumulant estimation is given. In many cases, not enough attention is paid to the fact that f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 30  شماره 

صفحات  -

تاریخ انتشار 1993