Foxl1 null mice have abnormal intestinal epithelia, postnatal growth retardation, and defective intestinal glucose uptake.
نویسندگان
چکیده
Mice lacking the mesenchymal winged helix transcription factor Foxl1 exhibit markedly abnormal small intestinal epithelia and postnatal growth retardation. We investigated whether defects in intestinal nutrient uptake and specific transport processes exist in mice homozygous for a Foxl1 null allele (Foxl1-/-). Foxl1-/- mice and controls on a defined genetic background were weighed regularly and killed at 2, 4, and 12 wk of age. Intestinal uptake studies, quantitative real-time PCR, RNase protection assays, and Western blot analyses were performed. Foxl1-/- mice have dysmorphic small intestinal epithelia and postnatal growth retardation. Foxl1-/- mice demonstrate decreased small intestinal uptake of D-glucose in all age groups studied. Intestinal uptake of D-fructose and two amino acids, L-proline and L-leucine, is not altered. Consistent with these findings, Foxl1-/- mice show decreased levels of the intestinal D-glucose transporter SGLT1. Expression of sucrase-isomaltase, lactase, GLUT2, and Na+-K+ ATPase are not changed. Foxl1-/- mice demonstrate markedly abnormal intestinal epithelia, postnatal growth retardation, and decreased intestinal uptake of D-glucose. The specific effect of Foxl1 on intestinal d-glucose uptake is due to decreased production of SGLT1 protein in the small intestine. Thus we identified, for the first time, a link between a mesenchymal factor, Foxl1, and the regulation of a specific epithelial transport process.
منابع مشابه
Defective intestinal amino acid absorption in Ace2 null mice.
Mutations in the main intestinal and kidney luminal neutral amino acid transporter B(0)AT1 (Slc6a19) lead to Hartnup disorder, a condition that is characterized by neutral aminoaciduria and in some cases pellagra-like symptoms. These latter symptoms caused by low-niacin are thought to result from defective intestinal absorption of its precursor L-tryptophan. Since Ace2 is necessary for intestin...
متن کاملConditional deletion of β1 integrins in the intestinal epithelium causes a loss of Hedgehog expression, intestinal hyperplasia, and early postnatal lethality
Conditional deletion of beta1 integrins in the intestinal epithelium, unlike in epidermal and mammary epithelia, of mice does not result in decreased cell adhesion and proliferation, but instead causes a profound increase in epithelial proliferation with dysplasia and polypoid structures. The increased epithelial proliferation inhibited epithelial differentiation that caused severe malnutrition...
متن کاملGlycosphingolipids are essential for intestinal endocytic function.
Glycosphingolipids (GSLs) constitute major components of enterocytes and were hypothesized to be potentially important for intestinal epithelial polarization. The enzyme UDP-glucose ceramide glucosyltransferase (Ugcg) catalyzes the initial step of GSL biosynthesis. Newborn and adult mice with enterocyte-specific genetic deletion of the gene Ugcg were generated. In newborn mutants lacking GSLs a...
متن کاملGut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1.
Glucagon-like peptide-1 (GLP-1), released from gut endocrine L cells in response to glucose, regulates appetite, insulin secretion, and gut motility. How glucose given orally, but not systemically, induces GLP-1 secretion is unknown. We show that human duodenal L cells express sweet taste receptors, the taste G protein gustducin, and several other taste transduction elements. Mouse intestinal L...
متن کاملFoxl1-Expressing Mesenchymal Cells Constitute the Intestinal Stem Cell Niche
BACKGROUND & AIMS Intestinal epithelial stem cells that express Lgr5 and/or Bmi1 continuously replicate and generate differentiated cells throughout life1. Previously, Paneth cells were suggested to constitute an epithelium-intrinsic niche that regulates the behavior of these stem cells2. However, ablating Paneth cells has no effect on maintenance of functional stem cells3-5. Here, we demonstra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 287 4 شماره
صفحات -
تاریخ انتشار 2004