Decoding with Large-Scale Neural Language Models Improves Translation

نویسندگان

  • Ashish Vaswani
  • Yinggong Zhao
  • Victoria Fossum
  • David Chiang
چکیده

We explore the application of neural language models to machine translation. We develop a new model that combines the neural probabilistic language model of Bengio et al., rectified linear units, and noise-contrastive estimation, and we incorporate it into a machine translation system both by reranking k-best lists and by direct integration into the decoder. Our large-scale, large-vocabulary experiments across four language pairs show that our neural language model improves translation quality by up to 1.1 Bleu.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Combination for Machine Translation

Machine translation benefits from two types of decoding techniques: consensus decoding over multiple hypotheses under a single model and system combination over hypotheses from different models. We present model combination, a method that integrates consensus decoding and system combination into a unified, forest-based technique. Our approach makes few assumptions about the underlying component...

متن کامل

Decoder Integration and Expected BLEU Training for Recurrent Neural Network Language Models

Neural network language models are often trained by optimizing likelihood, but we would prefer to optimize for a task specific metric, such as BLEU in machine translation. We show how a recurrent neural network language model can be optimized towards an expected BLEU loss instead of the usual cross-entropy criterion. Furthermore, we tackle the issue of directly integrating a recurrent network i...

متن کامل

Efficient machine translation decoding with slow language models

Efficient decoding has been a fundamental problem in machine translation research. Usually a significant part of the computational complexity is found in the language model cost computations. If slow language models, such as neural network or maximum-entropy models are used, the computational complexity can be so high as to render decoding impractical. In this paper we propose a method to effic...

متن کامل

Investigations on Phrase-based Decoding with Recurrent Neural Network Language and Translation Models

This work explores the application of recurrent neural network (RNN) language and translation models during phrasebased decoding. Due to their use of unbounded context, the decoder integration of RNNs is more challenging compared to the integration of feedforward neural models. In this paper, we apply approximations and use caching to enable RNN decoder integration, while requiring reasonable m...

متن کامل

Converting Continuous-Space Language Models into N-Gram Language Models for Statistical Machine Translation

Neural network language models, or continuous-space language models (CSLMs), have been shown to improve the performance of statistical machine translation (SMT) when they are used for reranking n-best translations. However, CSLMs have not been used in the first pass decoding of SMT, because using CSLMs in decoding takes a lot of time. In contrast, we propose a method for converting CSLMs into b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013