Adjusting for the partial volume effect in cortical bone analyses of pQCT images.

نویسندگان

  • J Rittweger
  • I Michaelis
  • M Giehl
  • P Wüsecke
  • D Felsenberg
چکیده

Quantitative analyses of computed tomography images are prone to errors due to the partial volume effect which affects objects (e.g., bones) that have a different size or are assessed with different resolution. We have developed a set of equations suitable for both modeling the partial volume effect in cortical bone and for performing the corresponding adjustment. Seven hollow cylinders and 2 cuboid phantoms were made out of Al with 1% Si. The specimens were scanned with a pQCT machine (XCT2002, Stratec Medizintechnik, Pforzheim, Germany) and analyzed with the integrated software, version 5.50. Measurements were performed at different resolutions (voxel size=0.20 to 0.75 mm), both in air and in Ringer solution, and analyses were performed at different detection thresholds. Applying the correcting equations set we could reduce the errors in cortical density by about 80%. The cortical area was assessed with a negligible error at a threshold (theta0) that is equivalent to the mean of the cortical bone density and of the background density. On choosing theta0 as the detection threshold the error in density was lowered to less than 2%. We propose to assess cortical area and cortical density in several steps, first assessing the area and density thereafter. Applying this method should be beneficial whenever "true world" values are required, or objects of different size are compared.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Resolution Peripheral Quantitative Computed Tomography Can Assess Microstructural and Mechanical Properties of Human Distal Tibial Bone

High-resolution peripheral quantitative computed tomography (HR-pQCT) is a newly developed in vivo clinical imaging modality. It can assess the 3D microstructure of cortical and trabecular bone at the distal radius and tibia and is suitable as an input for microstructural finite element (microFE) analysis to evaluate bone's mechanical competence. In order for microstructural and image-based mic...

متن کامل

Age- and Gender-Related Differences in the Geometric Properties and Biomechanical Significance of Intracortical Porosity in the Distal Radius and Tibia

Cortical bone contributes the majority of overall bone mass and bears the bulk of axial loads in the peripheral skeleton. Bone metabolic disorders often are manifested by cortical microstructural changes via osteonal remodeling and endocortical trabecularization. The goal of this study was to characterize intracortical porosity in a cross-sectional patient cohort using novel quantitative comput...

متن کامل

A comparison of peripheral imaging technologies for bone and muscle quantification: a technical review of image acquisition

The choice of an appropriate imaging technique to quantify bone, muscle, or muscle adiposity needs to be guided by a thorough understanding of its competitive advantages over other modalities balanced by its limitations. This review details the technical machinery and methods behind peripheral quantitative computed tomography (pQCT), high-resolution (HR)-pQCT, and magnetic resonance imaging (MR...

متن کامل

The association between insulin levels and cortical bone: Findings from a cross-sectional analysis of pQCT parameters in adolescents

Recent studies suggest that patients with type 2 diabetes mellitus are at increased risk of fracture, possibly because hyperinsulinemia is a risk factor for low bone mineral density, which may in turn be a consequence of a lipotoxic effect of visceral and/or intramuscular fat on bone. In the current study, we investigated whether insulin plays a role in cortical bone development by performing a...

متن کامل

Least significant changes and monitoring time intervals for high-resolution pQCT-derived bone outcomes in postmenopausal women

BACKGROUND Least Significant Change (LSC) assists in determining whether observed bone change is beyond measurement precision. Monitoring Time Interval (MTI) estimates time required to reliably detect skeletal changes. MTIs have not been defined for bone outcomes provided by high resolution peripheral quantitative computed tomography (HR-pQCT). The purpose of this study was to determine the LSC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of musculoskeletal & neuronal interactions

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2004