Approximation by Aliasing with Application to "Certaine" Stiff Differential Equations
نویسندگان
چکیده
The usual method of finding an accurate trigonometric interpolation for a function with dominant high frequencies requires a large number of calculations. This paper shows how aliasing can be used to achieve a great reduction in the computations in cases when the high frequencies are known beforehand. The technique is applied to stiff differential equations, extending the applicability of the method of Certaine to systems with oscillatory forcing functions.
منابع مشابه
Optimization of solution stiff differential equations using MHAM and RSK methods
In this paper, a nonlinear stiff differential equation is solved by using the Rosenbrock iterative method, modified homotpy analysis method and power series method. The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relations. Some numerical examples are studied to demonstrate the accuracy of the presented meth...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملSimulation of the Diode Limiter in Guitar Distortion Circuits by Numerical Solution of Ordinary Differential Equations
The diode clipper circuit with an embedded low-pass filter lies at the heart of both diode clipping “Distortion” and “Overdrive” or “Tube Screamer” effects pedals. An accurate simulation of this circuit requires the solution of a nonlinear ordinary differential equation (ODE). Numerical methods with stiff stability – Backward Euler, Trapezoidal Rule, and second-order Backward Difference Formula...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010