A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: self-feeding sparse SENSE.
نویسندگان
چکیده
The method of enforcing sparsity during magnetic resonance imaging reconstruction has been successfully applied to partially parallel imaging (PPI) techniques to reduce noise and artifact levels and hence to achieve even higher acceleration factors. However, there are two major problems in the existing sparsity-constrained PPI techniques: speed and robustness. By introducing an auxiliary variable and decomposing the original minimization problem into two subproblems that are much easier to solve, a fast and robust numerical algorithm for sparsity-constrained PPI technique is developed in this work. The specific implementation for a conventional Cartesian trajectory data set is named self-feeding Sparse Sensitivity Encoding (SENSE). The computational cost for the proposed method is two conventional SENSE reconstructions plus one spatially adaptive image denoising procedure. With reconstruction time approximately doubled, images with a much lower root mean square error (RMSE) can be achieved at high acceleration factors. Using a standard eight-channel head coil, a net acceleration factor of 5 along one dimension can be achieved with low RMSE. Furthermore, the algorithm is insensitive to the choice of parameters. This work improves the clinical applicability of SENSE at high acceleration factors.
منابع مشابه
Recursive Generalized Maximum Correntropy Criterion Algorithm with Sparse Penalty Constraints for System Identification
To address sparse system identification problem in non-Gaussian impulsive noise environment, the recursive generalized maximum correntropy criterion (RGMCC) algorithm with sparse penalty constraints is proposed to combat impulsive-inducing instability. Specifically, a recursive algorithm based on the generalized correntropy with a forgetting factor of error is developed to improve the performan...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملStructural Damage Identification Based on Substructure Sensitivity and l_1 Sparse Regularization
Sparsity constraints are now very popular to regularize inverse problems in the field of applied mathematics. Structural damage identification is a typical inverse problem of structural dynamics and Structural damage is a spatial sparse phenomenon, i.e., structural damage occurs, only part of elements or substructures are damaged. In this paper, a structural damage identification method based o...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 64 4 شماره
صفحات -
تاریخ انتشار 2010