On Approximating the Maximum Simple Sharing Problem
نویسندگان
چکیده
In the maximum simple sharing problem (MSS), we want to compute a set of node-disjoint simple paths in an undirected bipartite graph covering as many nodes as possible of one layer of the graph, with the constraint that all paths have both endpoints in the other layer. This is a variation of the maximum sharing problem (MS) that finds important applications in the design of molecular quantum-dot cellular automata (QCA) circuits and physical synthesis in VLSI. It also generalizes the maximum weight node-disjoint path cover problem. We show that MSS is NP-complete, present a polynomial-time 5 3 -approximation algorithm, and show that it cannot be approximated with a factor better than 740 739 unless P = NP .
منابع مشابه
A New Approach for Approximating Solution of Continuous Semi-Infinite Linear Programming
This paper describes a new optimization method for solving continuous semi-infinite linear problems. With regard to the dual properties, the problem is presented as a measure theoretical optimization problem, in which the existence of the solution is guaranteed. Then, on the basis of the atomic measure properties, a computation method was presented for obtaining the near optimal so...
متن کاملApproximating Bayes Estimates by Means of the Tierney Kadane, Importance Sampling and Metropolis-Hastings within Gibbs Methods in the Poisson-Exponential Distribution: A Comparative Study
Here, we work on the problem of point estimation of the parameters of the Poisson-exponential distribution through the Bayesian and maximum likelihood methods based on complete samples. The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated using three methods, namely the Tierney Kadane approximation method, the importance sampling method and the Metrop...
متن کاملApproximating the Maximum Sharing Problem
In the maximum sharing problem (MS), we want to compute a set of (non-simple) paths in an undirected bipartite graph covering as many nodes as possible of the first node layer of the graph, with the constraint that all paths have both endpoints in the second node layer and no node in that layer is covered more than once. MS is equivalent to the node-duplication based crossing elimination proble...
متن کاملApproximating quadratic programming with bound and quadratic constraints
We consider the problem of approximating the global maximum of a quadratic program (QP) subject to bound and (simple) quadratic constraints. Based on several early results, we show that a 4=7-approximate solution can be obtained in polynomial time.
متن کاملA Saturated Linear Dynamical Network for Approximating Maximum Clique
We use a saturated linear gradient dynamical network for finding an approximate solution to the maximum clique problem. We show that for almost all initial conditions, any solution of the network defined on a closed hypercube reaches one of the vertices of the hypercube, and any such vertex corresponds to a maximal clique. We examine the performance of the method on a set of random graphs and c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006