"active Boosted Learning" Active Boosted Learning (actboost)

نویسنده

  • D. Castañón
چکیده

Active learning deals with the problem of selecting a small subset of examples to label, from a pool of unlabeled data, for training a good classifier. We develop an active learning algorithm in the boosting framework. In contrast to much of the recent efforts, which has focused on selecting the most ambiguous unlabeled example to label based on the current learned classifier, our algorithm selects examples to maximally reduce the volume of the version space of feasible boosted classifiers. We show that under suitable sparsity assumptions, this strategy achieves the generalization error performance of a boosted classifier trained on the entire data set while only selecting logarithmically many unlabeled samples to label. We also establish a partial negative result, in that with out imposing structural assumptions it is difficult to guarantee generalization error performance. We explicitly characterize our convergence rate in terms of the sign pattern differences produced by the weak learners on the unlabeled data. We also present a convex relaxation to account for the non-convex sparse structure and show that the computational complexity of the resulting algorithm scales polynomially in the number of weak learners. We test ActBoost on several datasets to illustrate its performance and demonstrate its robustness to initialization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Boosted Learning (ActBoost)

Active learning deals with the problem of selecting a small subset of examples to label, from a pool of unlabeled data, for training a good classifier. We develop an active learning algorithm in the boosting framework. In contrast to much of the recent efforts, which has focused on selecting the most ambiguous unlabeled example to label based on the current learned classifier, our algorithm sel...

متن کامل

Publications " Active Boosted Learning "

Active learning deals with the problem of selecting a small subset of examples to label, from a pool of unlabeled data, for training a good classifier. We develop an active learning algorithm in the boosting framework. In contrast to much of the recent efforts, which has focused on selecting the most ambiguous unlabeled example to label based on the current learned classifier, our algorithm sel...

متن کامل

" Active Boosted Learning "

Active learning deals with the problem of selecting a small subset of examples to label, from a pool of unlabeled data, for training a good classifier. We develop an active learning algorithm in the boosting framework. In contrast to much of the recent efforts, which has focused on selecting the most ambiguous unlabeled example to label based on the current learned classifier, our algorithm sel...

متن کامل

Real-Time Hand Gesture Detection and Recognition Using Boosted Classifiers and Active Learning

In this article a robust and real-time hand gesture detection and recognition system for dynamic environments is proposed. The system is based on the use of boosted classifiers for the detection of hands and the recognition of gestures, together with the use of skin segmentation and hand tracking procedures. The main novelty of the proposed approach is the use of innovative training techniques ...

متن کامل

Active relational rule learning in a constrained confidence rated boosting framework

In this dissertation, I investigate the potential of boosting within the framework of relational rule learning. Boosting is a particularly robust and powerful technique to enhance the prediction accuracy of systems that learn from examples. Although boosting has been extensively studied in the last years for propositional learning systems, only little attention has been paid to boosting in rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016