A New Approach to Speech Enhancement Em and Mixture M
نویسندگان
چکیده
Speech enhancement and recognition in noisy, reverberant conditions is a challenging open problem. We present a new approach to this problem, which is developed in the framework of probabilistic modeling. Our approach incorporates information about the statistical structure of speech signals using a speech model, which is pre-trained on a large dataset of clean speech. The speech model is a component in a larger model describing the observed sensor signals. That model is parametrized by the coefficients of the reverberation filters and the spectra of the sensor noise. We develop an EM algorithm that estimates those parameters from data and constructs a Bayes optimal estimator of the original speech signal.
منابع مشابه
Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملA new approach to speech enhancement by a microphone array using EM and mixture models
Speech enhancement and recognition in noisy, reverberant conditions is a challenging open problem. We present a new approach to this problem, which is developed in the framework of probabilistic modeling. Our approach incorporates information about the statistical structure of speech signals using a speech model, which is pre-trained on a large dataset of clean speech. The speech model is a com...
متن کاملSpeech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
متن کاملSpeech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering
This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...
متن کاملA New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement
In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the combination of the conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002