Underdetermined Blind Source Separation with Fuzzy Clustering for Arbitrarily Arranged Sensors
نویسندگان
چکیده
Recently, the concept of time-frequency masking has developed as an important approach to the blind source separation problem, particularly when in the presence of reverberation. However, previous research has been limited by factors such as the sensor arrangement and/or the mask estimation technique implemented. This paper presents a novel integration of two established approaches to BSS in an effort to overcome such limitations. A multidimensional feature vector is extracted from a non-linear sensor arrangement, and the fuzzy c-means algorithm is then applied to cluster the feature vectors into representations of the source speakers. Fuzzy time-frequency masks are estimated and applied to the observations for source recovery. The evaluations on the proposed study demonstrated improved separation quality over all test conditions. This establishes the potential of multidimensional fuzzy c-means clustering for mask estimation in the context of blind source separation.
منابع مشابه
Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors
This paper presents a new method for blind sparse source separation. Some sparse source separation methods, which rely on source sparseness and an anechoic mixing model, have already been proposed. These methods utilize level ratios and phase differences between sensor observations as their features, and they separate signals by classifying them. However, some of the features cannot form cluste...
متن کاملEvaluations on underdetermined blind source separation in adverse environments using time-frequency masking
The successful implementation of speech processing systems in the real world depends on its ability to handle adverse acoustic conditions with undesirable factors such as room reverberation and background noise. In this study, an extension to the established multiple sensors degenerate unmixing estimation technique (MENUET) algorithm for blind source separation is proposed based on the fuzzy c-...
متن کاملUnderdetermined Blind Source Separation of Synchronous Orthogonal Frequency Hopping Signals Based on Single Source Points Detection
This paper considers the complex-valued mixing matrix estimation and direction-of-arrival (DOA) estimation of synchronous orthogonal frequency hopping (FH) signals in the underdetermined blind source separation (UBSS). A novel mixing matrix estimation algorithm is proposed by detecting single source points (SSPs) where only one source contributes its power. Firstly, the proposed algorithm disti...
متن کاملReal Time and High Clarity Speech Signal Separation using Underdetermined BSS
Speech Separation is one of the persuaded technologies for extensive variety of application in various fields, in which separation of blind speech signal is a difficult assignment. The two methods for blind source separation are under-determined and over determined. Over determined blind source separation is the most stimulating issue as it has less number of sensors. Another method for techniq...
متن کاملIdentifiability Conditions and Subspace Clustering in Sparse BSS
We give general identifiability conditions on the source matrix in Blind Signal Separation problem. They refine some previously known ones. We develop a subspace clustering algorithm, which is a generalization of the k-plane clustering algorithm, and is suitable for separation of sparse mixtures with bigger sparsity (i.e. when the number of the sensors is bigger at least by 2 than the number of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011