Object Tracking and Pose Estimation Using Light-Field Object Models
نویسندگان
چکیده
Geometric object models have been widely used for visual object tracking. In this contribution we present particle filter based object tracking with pose estimation using an appearance based lightfield object model. A light-field is an image-based object representation which can be used to render a photo realistic view of an arbitrarily shaped object from arbitrary viewpoints. It is shown how lightfield object models can be generated and utilized. Furthermore, we show how these models fit into the probabilistic framework of dynamic state estimation by defining an appropriate likelihood distribution from an image similarity metric. Finally, we present results and accuracy evaluations from tracking experiments of different objects.
منابع مشابه
Using a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملFixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملObject recognition and pose estimation using color cooccurrence histograms and geometric modeling
Robust techniques for object recognition and pose estimation are essential for robotic manipulation and object grasping. In this paper, a novel approach for object recognition and pose estimation based on color cooccurrence histograms and geometric modelling is presented. The particular problems addressed are: (i) robust recognition of objects in natural scenes, (ii) estimation of partial pose ...
متن کاملContinuous - state Graphical Models for Object Localization , Pose Estimation and Tracking
of “Continuous-state Graphical Models for Object Localization, Pose Estimation and Tracking” by Leonid Sigal, Ph.D., Brown University, May 2008. Reasoning about pose and motion of objects, based on images or video, is an important task for many machine vision applications. Estimating the pose of articulated objects such as people and animals is particularly challenging due to the complexity of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002