Reduced xenon diffusion for quantitative lung study--the role of SF(6).
نویسندگان
چکیده
The large diffusion coefficients of gases result in significant spin motion during the application of gradient pulses that typically last a few milliseconds in most NMR experiments. In restricted environments, such as the lung, this rapid gas diffusion can lead to violations of the narrow pulse approximation, a basic assumption of the standard Stejskal-Tanner NMR method of diffusion measurement. We therefore investigated the effect of a common, biologically inert buffer gas, sulfur hexafluoride (SF(6)), on (129)Xe NMR and diffusion. We found that the contribution of SF(6) to (129)Xe T(1) relaxation in a 1:1 xenon/oxygen mixture is negligible up to 2 bar of SF(6) at standard temperature. We also measured the contribution of SF(6) gas to (129)Xe T(2) relaxation, and found it to scale inversely with pressure, with this contribution approximately equal to 1 s for 1 bar SF(6) pressure and standard temperature. Finally, we found the coefficient of (129)Xe diffusion through SF(6) to be approximately 4.6 x 10(-6) m(2)s(-1) for 1 bar pressure of SF(6) and standard temperature, which is only 1.2 times smaller than the (129)Xe self diffusion coefficient for 1 bar (129)Xe pressure and standard temperature. From these measurements we conclude that SF(6) will not sufficiently reduce (129)Xe diffusion to allow accurate surface-area/volume ratio measurements in human alveoli using time-dependent gas diffusion NMR.
منابع مشابه
Xenon Surface Relaxivity: Potential Applications to Probing Lung Disease
Introduction Because hyperpolarized Xe gas NMR signals can result in four to five orders of magnitude polarization enhancement compared to thermal equilibrium signals even at high fields , hyperpolarized Xe gas MRI has shown great promise for lung imaging. Scientists have developed many techniques to assess lung properties, such as ADC (apparent diffusion coefficient) , XTC (Xenon polarization ...
متن کاملThe Protective Effect of Sodium Ferulate and Oxymatrine Combination on Paraquat-induced Lung Injury
Experimental evidence suggested that sodium ferulate (SF) and oxymatrine (OMT) combination had synergistic anti-inflammatory and antioxidant effects. We hypothesized that SF and OMT combination treatment might have protective effects on paraquat-induced acute lung injury. In our study, the Swiss mice were randomly divided into seven groups, including control, paraquat (PQ), SF (6.2 mg/kg/day); ...
متن کاملQuantitative evaluation of radiation-induced lung injury with hyperpolarized xenon magnetic resonance.
PURPOSE To demonstrate the feasibility of quantitative and comprehensive global evaluation of pulmonary function and microstructural changes in rats with radiation-induced lung injury (RILI) using hyperpolarized xenon MR. METHODS Dissolved xenon spectra were dynamically acquired using a modified chemical shift saturation recovery pulse sequence in five rats with RILI (bilaterally exposed by 6...
متن کاملThe Protective Effect of Sodium Ferulate and Oxymatrine Combination on Paraquat-induced Lung Injury
Experimental evidence suggested that sodium ferulate (SF) and oxymatrine (OMT) combination had synergistic anti-inflammatory and antioxidant effects. We hypothesized that SF and OMT combination treatment might have protective effects on paraquat-induced acute lung injury. In our study, the Swiss mice were randomly divided into seven groups, including control, paraquat (PQ), SF (6.2 mg/kg/day); ...
متن کاملValidity of Spo2/Fio2 Ratio in Detection of Acute Lung Injury and Acute Respiratory Distress Syndrome
Introduction: One ofdiagnostic criteria for Acute Lung Injury and Acute Respiratory Distress Syndrome is pao2/fio2 (PF) ratio 300 for ALI or 200 for ARDS. This criteria requires invasive arterial sampling. Measurement of Spo2/Fio2 (SF) ratio by pulseoximetry may be a reliable non invasive alternative to the PF ratio. Methods and Materials: In a cross sectional study we enrolled 105 sample o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NMR in biomedicine
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2000