Analysis of optical absorption in GaAs nanowire arrays

نویسندگان

  • Haomin Guo
  • Long Wen
  • Xinhua Li
  • Zhifei Zhao
  • Yuqi Wang
چکیده

In this study, the influence of the geometric parameters on the optical absorption of gallium arsenide [GaAs] nanowire arrays [NWAs] has been systematically analyzed using finite-difference time-domain simulations. The calculations reveal that the optical absorption is sensitive to the geometric parameters such as diameter [D], length [L], and filling ratio [D/P], and more efficient light absorption can be obtained in GaAs NWAs than in thin films with the same thickness due to the combined effects of intrinsic antireflection and efficient excitation of resonant modes. Optimized geometric parameters are obtained as follows: D = 180 nm, L = 2 μm, and D/P = 0.5. Meanwhile, the simulation on the absorption of GaAs NWAs for oblique incidence has also been carried out. The underlying physics is discussed in this work.PACS: 81.07.Gf nanowires; 81.05.Ea III-V semiconductors; 88.40.hj efficiency and performance of solar cells; 73.50.Pz photoconduction and photovoltaic effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned...

متن کامل

Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon.

Nanowire diameter has a dramatic effect on the absorption cross-section in the optical domain. The maximum absorption is reached for ideal nanowire morphology within a solar cell device. As a consequence, understanding how to tailor the nanowire diameter and density is extremely important for high-efficient nanowire-based solar cells. In this work, we investigate mastering the diameter and dens...

متن کامل

Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications.

Optical properties are numerically investigated for vertically aligned silicon nanowire arrays with three types of structural randomness, i.e., random position, diameter, and length. Nanowire arrays with random position show slight absorption enhancement, while those with random diameter or length show significant absorption enhancement, which is attributed to the stronger optical scattering in...

متن کامل

Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation.

We report design methods for achieving near-unity broadband light absorption in sparse nanowire arrays, illustrated by results for visible absorption in GaAs nanowires on Si substrates. Sparse (<5% fill fraction) nanowire arrays achieve near unity absorption at wire resonant wavelengths due to coupling into 'leaky' radial waveguide modes of individual wires and wire-wire scattering processes. F...

متن کامل

Characterization and Application of Surface Plasmon-Enhanced Optical Diffraction from Electrodeposited Gold Nanowire Arrays.

Arrays of gold nanowires formed by the process of lithographically patterned nanowire electrodeposition (LPNE) were characterized by a combination of SEM, polarized UV-visible absorption spectroscopy and optical diffraction measurements. A transverse localized surface plasmon resonance (LSPR) was observed for gold nanowire arrays with an absorption maximum (λ(max)) that varied with nanowire wid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011