MoV2O8 nanostructures: controlled synthesis and lithium storage mechanism.

نویسندگان

  • Zhigang Yin
  • Ying Xiao
  • Xia Wang
  • Wei Wang
  • Di Zhao
  • Minhua Cao
چکیده

A facile two-step strategy involving a solvothermal method and a subsequent calcining treatment was successfully developed for the preparation of MoV2O8 nanorods in the absence of any surfactants. Acetic acid was chosen as the solvent to provide an acidic environment. The as-synthesized MoV2O8 nanorods were evaluated as an anode material in lithium ion batteries, which showed excellent lithium storage performance in terms of its specific capacity, rate performance, and cycling stability. It could deliver a specific capacity of over 1325 mA h g(-1) after 50 cycles at 0.2 A g(-1), which is much higher than that of bulk MoV2O8 (617 mA h g(-1)). When the cell was cycled at a current density as high as 10.0 A g(-1), it still maintained a high specific capacity of around 570 mA h g(-1). The phase transformation, intercalation-deintercalation and partial redox processes are responsible for the lithium storage mechanism of MoV2O8 based on ex situ X-ray diffraction, X-ray photo electron spectroscopy and transmission electron microscopy studies, highlighting a new lithium storage mechanism for ternary metal oxides.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tackling Reversible Conversion Reaction Mechanism for Lithium Based Battery

The demand for next generation of lithium based batteries with higher capacity and rate as well as increased cycle and calendar life requires new lithium storage and transfer mechanisms beyond what current lithium ion battery technique could provide. In lithium based battery, the lithium ions are stored in electrode materials either by physically intercalating (e.g. LiCoC2) or chemically alloyi...

متن کامل

Controlled synthesis of heterogeneous metal-titania nanostructures and their applications.

We describe a new synthetic approach to heterogeneous metal-TiO(2) nanomaterials based on conversion of Ti(3+) to hydrous TiO(2) occurring uniquely on the nanostructured metallic surfaces such as Pt, Au, and Ni nanowires and nanoparticles. The TiO(2) growth mechanism was studied by designing an electrochemical cell. A variety of heterogeneous metal-TiO(2) nanostructures, such as segmented meta...

متن کامل

Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage.

The morphology-controlled synthesis of SnO2 hollow/nanoporous nanostructures (nanotubes, urchin-like morphologies and nanospheres) was achieved via a template-engaged replacement reaction at a mild temperature (lower than 80 °C). The formation mechanism of hollow interior and nanoporous walls for the obtained SnO2 nanostructures (SnO2 nanotubes were used as an example) was investigated based on...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials

We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2016