High resolution approach to the native state ensemble kinetics and thermodynamics.

نویسندگان

  • Sangwook Wu
  • Pavel I Zhuravlev
  • Garegin A Papoian
چکیده

Many biologically interesting functions such as allosteric switching or protein-ligand binding are determined by the kinetics and mechanisms of transitions between various conformational substates of the native basin of globular proteins. To advance our understanding of these processes, we constructed a two-dimensional free energy surface (FES) of the native basin of a small globular protein, Trp-cage. The corresponding order parameters were defined using two native substructures of Trp-cage. These calculations were based on extensive explicit water all-atom molecular dynamics simulations. Using the obtained two-dimensional FES, we studied the transition kinetics between two Trp-cage conformations, finding that switching process shows a borderline behavior between diffusive and weakly-activated dynamics. The transition is well-characterized kinetically as a biexponential process. We also introduced a new one-dimensional reaction coordinate for the conformational transition, finding reasonable qualitative agreement with the two-dimensional kinetics results. We investigated the distribution of all the 38 native nuclear magnetic resonance structures on the obtained FES, analyzing interactions that stabilize specific low-energy conformations. Finally, we constructed a FES for the same system but with simple dielectric model of water instead of explicit water, finding that the results were surprisingly similar in a small region centered on the native conformations. The dissimilarities between the explicit and implicit model on the larger-scale point to the important role of water in mediating interactions between amino acid residues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics and Folding Kinetics Analysis of the SH3 Domain from Discrete Molecular Dynamics

Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA We perform a detailed analysis of the thermodynamics and folding kinetics of the SH3 domain fold with discrete molecular dynamic simulations. We propose a protein model that reproduces some of the experimentally observed thermodynamic and folding kinetic properties of proteins. Specifically, we use our mod...

متن کامل

The Thermodynamics and Kinetics of Protein Folding: A Lattice Model Analysis of Multiple Pathways with Intermediates

The kinetics and thermodynamics of folding of a representative sequence of a 125-residue protein model subject to Monte Carlo dynamics on a simple cubic lattice were investigated. The diverse trajectories that lead to the native state can be classified into a relatively small number of average pathways: a “fast track” in which the chain forms a stable core that folds directly to the native stat...

متن کامل

Thermodynamics and folding kinetics analysis of the SH3 domain form discrete molecular dynamics.

We perform a detailed analysis of the thermodynamics and folding kinetics of the SH3 domain fold with discrete molecular dynamic simulations. We propose a protein model that reproduces some of the experimentally observed thermodynamic and folding kinetic properties of proteins. Specifically, we use our model to study the transition state ensemble of the SH3 fold family of proteins, a set of uns...

متن کامل

The Roles of Entropy and Kinetics in Structure Prediction

BACKGROUND Here we continue our efforts to use methods developed in the folding mechanism community to both better understand and improve structure prediction. Our previous work demonstrated that Rosetta's coarse-grained potentials may actually impede accurate structure prediction at full-atom resolution. Based on this work we postulated that it may be time to work completely at full-atom resol...

متن کامل

Thermodynamics and Kinetics of Spiro-Heterocycle Formation Mechanism: Computational Study

Reaction mechanism among indoline-2,3-dione, pyrrolidine-2-carboxylic acid and (Z)-2-(1-(2-hydroxynaphthalen-1-yl)ethylidene)hydroxycarboxamide to form 1’-((((aminooxy)carbonyl)amino)methyl)-2’-(1-hydroxynaphthalen-2-yl)-2’-methyl-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolo[1,2-a]imidazole-2-one was investigated using density functional theory (DFT) at B3LYP basis theory. The three-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 95 12  شماره 

صفحات  -

تاریخ انتشار 2008