Competence-guided Editing Methods for Lazy Learning

نویسندگان

  • Elizabeth McKenna
  • Barry Smyth
چکیده

Lazy learning algorithms retain their raw training examples and defer all example-processing until problem solving time (eg, case-based learning, instance-based learning, and nearest-neighbour methods). A case-based classifier will typically compare a new target query to every case in its case-base (its raw training data) before deriving a target classification. This can make lazy methods prohibitively costly for large training sets. One way to reduce these costs is to filter or edit the original training set, to produce a reduced edited set by removing redundant or noisy examples. In this paper we describe and evaluate a new family of hybrid editing techniques that combine many of the features found in more traditional approaches with new techniques for estimating the usefulness of training examples. We demonstrate that these new techniques enjoy superior performance when compared to traditional and state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Case Based Reasoning with Bayesian Model Averaging: An Improved Method for Survival Analysis on Microarray Data

The Utility Problem for Lazy Learners Towards a Non-eager Approach p. 141 EGAL: Exploration Guided Active Learning for TCBR p. 156 Introspective Knowledge Revision in Textual Case-Based Reasoning p. 171 A General Introspective Reasoning Approach to Web Search for Case Adaptation p. 186 Detecting Change via Competence Model p. 201 CBTV: Visualising Case Bases for Similarity Measure Design and Se...

متن کامل

Skill Refinement through Competence Feedback

Learning is generally performed in two stages, knowledge acquisition and skill refinement. Developments within machine learning have tended to concentrate on knowledge acquisition as opposed to skill refinement. In this paper we develop mechanisms for skill refinement within the context of lazy learning by incorporating competence feedback into the exemplar base. The extent of competence feedba...

متن کامل

Abstraction is Harmful in Language Learning

The usual approach to learning language processing tasks such as tagging, parsing, grapheme-to-phoneme conversion, pp-attachrnent, etc., is to extract regularities from training data in the form of decision trees, rules, probabilities or other abstractions. These representations of regularities are then used to solve new cases of the task. The individual training examples on which the abstracti...

متن کامل

Teaching Academic Vocabulary Through Reconstruction Editing Task: Does Group Size Matter?

The use of collaborative classroom interactional tasks is on the rise recently since they incorporate the negotiation of meaning and thus they may be regarded as one of the most efficient ways to ease a learner’s focus on form. This study investigated the immediate and long-term effects of reconstruction editing task on the learning of 20 academic vocabulary items through using five reconstruct...

متن کامل

Geometric Decision Rules for Instance-Based Learning Problems

In the typical nonparametric approach to classification in instance-based learning and data mining, random data (the training set of patterns) are collected and used to design a decision rule (classifier). One of the most well known such rules is the k-nearest neighbor decision rule (also known as lazy learning) in which an unknown pattern is classified into the majority class among the k-neare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000