Optimal Hierarchical Modular Topologies for Producing Limited Sustained Activation of Neural Networks
نویسندگان
چکیده
An essential requirement for the representation of functional patterns in complex neural networks, such as the mammalian cerebral cortex, is the existence of stable regimes of network activation, typically arising from a limited parameter range. In this range of limited sustained activity (LSA), the activity of neural populations in the network persists between the extremes of either quickly dying out or activating the whole network. Hierarchical modular networks were previously found to show a wider parameter range for LSA than random or small-world networks not possessing hierarchical organization or multiple modules. Here we explored how variation in the number of hierarchical levels and modules per level influenced network dynamics and occurrence of LSA. We tested hierarchical configurations of different network sizes, approximating the large-scale networks linking cortical columns in one hemisphere of the rat, cat, or macaque monkey brain. Scaling of the network size affected the number of hierarchical levels and modules in the optimal networks, also depending on whether global edge density or the numbers of connections per node were kept constant. For constant edge density, only few network configurations, possessing an intermediate number of levels and a large number of modules, led to a large range of LSA independent of brain size. For a constant number of node connections, there was a trend for optimal configurations in larger-size networks to possess a larger number of hierarchical levels or more modules. These results may help to explain the trend to greater network complexity apparent in larger brains and may indicate that this complexity is required for maintaining stable levels of neural activation.
منابع مشابه
Sustained Activity in Hierarchical Modular Neural Networks: Self-Organized Criticality and Oscillations
Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and fi...
متن کاملEvolving Multimodal Behavior Through Subtask and Switch Neural Networks
While neuroevolution has been used successfully to discover effective control policies for intelligent agents, it has been difficult to evolve behavior that is multimodal, i.e. consists of distinctly different behaviors in different situations. This article proposes a new method, Modular NeuroEvolution of Augmenting Topologies (ModNEAT), to meet this challenge. ModNEAT decomposes complex tasks ...
متن کاملمعرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملOptimal Combined and Adaptive Protection of Active Distribution Networks Considering Different System Topologies Incorporating Optimal Selection of Standard Relay Curves
The change in the topology of active distribution networks (ADNs) is one of the essential challenges that might affect the protection schemes. The conventional protection schemes based on base topology result in some coordination constraint violations in other topologies due to the outage of upstream substations and distributed generation units. In this article, new combinational and adaptive p...
متن کاملModular Back-Propagation Neural Networks For Large Domain Pattern Classification
A significant problem associated with application of the Back Propagation learning paradigm for pattern classification is the lack of high accuracy in generalization when the domain is large. In this paper we describe a multiple neural network system, which uses two self-organizing neural networks that work as teaching data filters (feature extractors), producing information that is used to tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2010