Assay for Pathogen-Associated Molecular Pattern (PAMP)-Triggered Immunity (PTI) in Plants
نویسندگان
چکیده
To perceive potential pathogens in their environment, plants use pattern recognition receptors (PRRs) present on their plasma membranes. PRRs recognize conserved microbial features called pathogen-associated molecular patterns (PAMPs) and this detection leads to PAMP-triggered immunity (PTI), which effectively prevents colonization of plant tissues by non-pathogens(1,2). The most well studied system in PTI is the FLS2-dependent pathway(3). FLS2 recognizes the PAMP flg22 that is a component of bacterial flagellin. Successful pathogens possess virulence factors or effectors that can suppress PTI and allow the pathogen to cause disease(1). Some plants in turn possess resistance genes that detect effectors or their activity, which leads to effector-triggered immunity (ETI)(2). We describe a cell death-based assay for PTI modified from Oh and Collmer(4). The assay was standardized in N. benthamiana, which is being used increasingly as a model system for the study of plant-pathogen interactions(5). PTI is induced by infiltration of a non-pathogenic bacterial strain into leaves. Seven hours later, a bacterial strain that either causes disease or which activates ETI is infiltrated into an area overlapping the original infiltration zone. PTI induced by the first infiltration is able to delay or prevent the appearance of cell death due to the second challenge infiltration. Conversely, the appearance of cell death in the overlapping area of inoculation indicates a breakdown of PTI. Four different combinations of inducers of PTI and challenge inoculations were standardized (Table 1). The assay was tested on non-silenced N. benthamiana plants that served as the control and plants silenced for FLS2 that were predicted to be compromised in their ability to develop PTI.
منابع مشابه
Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity.
Pathogen-associated molecular patterns (PAMPs) trigger plant defenses when perceived by surface-localized immune receptors. PAMP-triggered immunity (PTI) plays a vital role in the resistance of plants to numerous potential pathogens. MicroRNA (miRNA) biogenesis is known to be important for PTI, but miRNA species involved in this process have not been fully explored. Here we show that the Arabid...
متن کاملFunctions of Calcium-Dependent Protein Kinases in Plant Innate Immunity.
An increase of cytosolic Ca(2+) is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI)....
متن کاملPlant immunity triggered by microbial molecular signatures.
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are recognized by host cell surface-localized pattern-recognition receptors (PRRs) to activate plant immunity. PAMP-triggered immunity (PTI) constitutes the first layer of plant immunity that restricts pathogen proliferation. PTI signaling components often are targeted by various Pseudomonas syringae virulence effector proteins, resul...
متن کاملPattern-recognition receptors in plant innate immunity.
Perception of pathogen-associated molecular patterns (PAMPs) constitutes the first layer of plant innate immunity and is referred to as PAMP-triggered immunity (PTI). For a long time, part of the plant community was sceptical about the importance of PAMP perception in plants. Genetic and biochemical studies have recently identified pattern-recognition receptors (PRRs) involved in the perception...
متن کاملNegative Regulation of PAMP-Triggered Immunity by an E3 Ubiquitin Ligase Triplet in Arabidopsis
The first line of active defense in plants is triggered by invariant microbial epitopes known as pathogen-associated molecular patterns (PAMPs). Perception of PAMPs by receptors activates a plethora of reactions ending in PAMP-triggered immunity (PTI), which contributes to broad-spectrum resistance. Here, we report a homologous triplet of U-box type E3 ubiquitin ligases (PUBs), PUB22, PUB23, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2009