DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide.
نویسندگان
چکیده
The genome-wide transcription profile of Escherichia coli cells treated with hydrogen peroxide was examined with a DNA microarray composed of 4,169 E. coli open reading frames. By measuring gene expression in isogenic wild-type and oxyR deletion strains, we confirmed that the peroxide response regulator OxyR activates most of the highly hydrogen peroxide-inducible genes. The DNA microarray measurements allowed the identification of several new OxyR-activated genes, including the hemH heme biosynthetic gene; the six-gene suf operon, which may participate in Fe-S cluster assembly or repair; and four genes of unknown function. We also identified several genes, including uxuA, encoding mannonate hydrolase, whose expression might be repressed by OxyR, since their expression was elevated in the DeltaoxyR mutant strain. In addition, the induction of some genes was found to be OxyR independent, indicating the existence of other peroxide sensors and regulators in E. coli. For example, the isc operon, which specifies Fe-S cluster formation and repair activities, was induced by hydrogen peroxide in strains lacking either OxyR or the superoxide response regulators SoxRS. These results expand our understanding of the oxidative stress response and raise interesting questions regarding the nature of other regulators that modulate gene expression in response to hydrogen peroxide.
منابع مشابه
Atmospheric Nonthermal Plasma-Treated PBS Inactivates Escherichia coli by Oxidative DNA Damage
We recently reported that phosphate-buffered saline (PBS) treated with nonthermal dielectric-barrier discharge plasma (plasma) acquires strong antimicrobial properties, but the mechanisms underlying bacterial inactivation were not known. The goal of this study is to understand the cellular responses of Escherichia coli and to investigate the properties of plasma-activated PBS. The plasma-activa...
متن کاملoxyR-dependent induction of Escherichia coli grx gene expression by peroxide stress.
The Escherichia coli OxyR protein is a transcriptional activator for a number of genes induced in response to low concentrations of hydrogen peroxide. To identify additional OxyR-regulated genes, I cloned a DNA fragment that shows promoter activity regulated by OxyR by direct selection of OxyR-binding DNA fragments. Analyses of the cloned fragment indicate that the grx gene, encoding glutaredox...
متن کاملTranscriptome analysis of Escherichia coli O157:H7 exposed to lysates of lettuce leaves.
Harvesting and processing of leafy greens inherently cause plant tissue damage, creating niches on leaves that human pathogens can exploit. We previously demonstrated that Escherichia coli O157:H7 (EcO157) multiplies more rapidly on shredded leaves than on intact leaves (M. T. Brandl, Appl. Environ. Microbiol. 74:5285-5289, 2008). To investigate how EcO157 cells adapt to physicochemical conditi...
متن کاملInduction of repair capacity for oxidatively damaged DNA as a component of peroxide stress response in Escherichia coli.
We examined whether or not peroxide stress induces a repair capacity for oxidatively damaged DNA in Escherichia coli cells. Peroxide stress was brought about by adding 30 microM hydrogen peroxide (H2O2) to exponentially growing cells. The following results were obtained. (1) After exposure to H2O2, E. coli resistance to X-rays was enhanced. The acquisition of resistance was inhibited by rifampi...
متن کاملSeveral pathways of hydrogen peroxide action that damage the E. coli genome
Hydrogen peroxide is an important reactive oxygen species (ROS) that arises either during the aerobic respiration process or as a by-product of water radiolysis after exposure to ionizing radiation. The reaction of hydrogen peroxide with transition metals imposes on cells an oxidative stress condition that can result in damage to cell components such as proteins, lipids and principally to DNA, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 183 15 شماره
صفحات -
تاریخ انتشار 2001