The Number Field Q(/5) and the Fibonacci Numbers

نویسنده

  • FRED DODD
چکیده

where 0) = %(1 + V5) . It is well known that Z(OJ) is a Euclidean domain [6, pp. 214-15], and that the units of Z(oo) are given by ±0), where nEZ [6, p. 221]. The Binet formula _ _ Fn = (00 03)/((A) W) = (0D 0))/>/5, where 0) = %(1 v5) is the conjugate of 0), expresses the n Fibonacci number in terms of the unit 0). Simiarly, the n Lucas number is given by Ln = b) + 0)". Also, an elementary induction argument using the result (i) = 03 + 1 shows that 0) = Fn,1 + Fnb) for n > 1. These results suggest that the arithmetic theory of Z(oo) can be a powerful tool in the investigation of the arithmetical properties of the Fibonacci and Lucas numbers. This is indeed the case, and the articles by Carlitz [4],Lind [10], and Lagarias & Weisser [9] utilize Z(oo) on a limited scale. In this paper, I further document the utility of Z(OJ) by deriving many of the familiar divisibility properties of the Fibonacci numbers using the arithmetic theory of Z((JO). Much of the development has been adapted from pages 164-174 of my doctoral dissertation [5], which gives a comprehensive treatment of number theory in Z(co).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

On Fibonacci numbers which are elliptic Korselt numbers

Here, we show that if E is a CM elliptic curve with CM field Q( √ −d), then the set of n for which the nth Fibonacci number Fn satisfies an elliptic Korselt criterion for Q( √ −d) (defined in the paper) is of asymptotic density zero.

متن کامل

GENERALIZED q - FIBONACCI NUMBERS

We introduce two sets of permutations of {1, 2, . . . , n} whose cardinalities are generalized Fibonacci numbers. Then we introduce the generalized q-Fibonacci polynomials and the generalized q-Fibonacci numbers (of first and second kind) by means of the major index statistic on the introduced sets of permutations.

متن کامل

Arithmetic properties of q-Fibonacci numbers and q-pell numbers

We investigate some arithmetic properties of the q-Fibonacci numbers and the q-Pell numbers.

متن کامل

Fibonacci numbers and orthogonal polynomials

We prove that the sequence (1/Fn+2)n≥0 of reciprocals of the Fibonacci numbers is a moment sequence of a certain discrete probability, and we identify the orthogonal polynomials as little q-Jacobi polynomials with q = (1− √ 5)/(1+ √ 5). We prove that the corresponding kernel polynomials have integer coefficients, and from this we deduce that the inverse of the corresponding Hankel matrices (1/F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1982