BIOCOMP’11 Uncertain Gene Regulatory Networks Simplified by Gramian-Based Approach
نویسندگان
چکیده
The complexity of gene regulatory networks described by coupled nonlinear differential equations is often an obstacle for analysis purposes. They are prone to internal parametrical fluctuations making thus robustness a crucial property of these networks to attenuate the effects of internal fluctuation. Therefore, the development of effective model reduction techniques for uncertain biological systems is of paramount importance in the field of systems biology. In this paper, we apply a Gramian-based approach for model reduction for gene regulatory networks based only on finding generalized Gramians and standard matrix transformations. The method is based on finding a generalized controllability and observability Gramian of the uncertain system and then based on a state transformation matrix a reduced-order representation. Under the assumption that the structured uncertainties are norm-bounded, we can prove that the reduced-order balanced system is also stable.
منابع مشابه
H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملBIOCOMP’11 Stability Analysis of Hybrid Stochastic Gene Regulatory Networks
Gene regulatory networks (GRNs) represent complex nonlinear coupled dynamical systems that models gene functions and regulations at the system level. Previous research has described GRNs as coupled nonlinear systems under parametric perturbations without considering the important aspect of stochasticity. However, a realistic model of a GRN is that of a hybrid stochastic retarded system that rep...
متن کاملAn Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes
In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...
متن کاملImproving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach
Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...
متن کاملInferring Gene Regulatory Networks from Asynchronous Microarray Data
Modern approaches to treating genetic disorders, cancers and even epidemics rely on a detailed understanding of the underlying gene signaling network. Previous work has used time series microarray data to infer gene signaling networks given a large number of accurate time series samples. Microarray data available for many biological experiments is limited to a small number of arrays with little...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011