Akt is essential for insulin modulation of amphetamine-induced human dopamine transporter cell-surface redistribution.
نویسندگان
چکیده
Uptake by the dopamine transporter (DAT) is the primary pathway for the clearance of extracellular dopamine (DA) and consequently for regulating the magnitude and duration of dopaminergic signaling. Amphetamine (AMPH) has been shown to decrease simultaneously DAT cell-surface expression and [(3)H]DA uptake. We have shown that insulin and its subsequent signaling through the phosphatidylinositol 3-kinase (PI3K)-dependent pathway oppose this effect of AMPH by promoting increased cell-surface expression. Here, we used human embryonic kidney 293 cells stably expressing the human DAT (hDAT cells) to investigate the downstream cellular components important for this effect of insulin. Akt is a protein kinase effector immediately downstream of PI3K. Both overexpression of a dominant-negative mutant of Akt (K179R) and the addition of 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine HCl (ML9), a pharmacological inhibitor of Akt, decreased cell-surface expression of DAT, suggesting a role of basal Akt signaling in the homoeostasis of DAT. Moreover, expression of a constitutively active Akt mutant reduced the ability of AMPH to decrease hDAT cell-surface expression as well as [(3)H]DA uptake. In contrast, overexpression of K179R blocked the ability of insulin to oppose AMPH-induced reduction of hDAT cell-surface expression and [(3)H]DA uptake, as did ML9. Our data demonstrate that hDAT cell-surface expression is regulated by the insulin signaling pathway and that Akt plays a key role in the hormonal modulation of AMPH-induced hDAT trafficking and in the regulation of basal hDAT cell-surface expression.
منابع مشابه
Dopamine transporter activity mediates amphetamine-induced inhibition of Akt through a Ca2+/calmodulin-dependent kinase II-dependent mechanism.
The primary mechanism for clearance of extracellular dopamine (DA) is uptake mediated by the dopamine transporter (DAT), which is governed, in part, by the number of functional DATs on the cell surface. Previous studies have shown that amphetamine (AMPH) decreases DAT cell surface expression, whereas insulin reverses this effect through the action of phosphatidylinositol 3-kinase (PI3K). Theref...
متن کاملDopamine Transporter Activity Mediates Amphetamine- Induced Inhibition of Akt through a Ca /Calmodulin- Dependent Kinase II-Dependent Mechanism
The primary mechanism for clearance of extracellular dopamine (DA) is uptake mediated by the dopamine transporter (DAT), which is governed, in part, by the number of functional DATs on the cell surface. Previous studies have shown that amphetamine (AMPH) decreases DAT cell surface expression, whereas insulin reverses this effect through the action of phosphatidylinositol 3-kinase (PI3K). Theref...
متن کاملRegulation of dopamine transporter trafficking by intracellular amphetamine.
The dopamine (DA) transporter (DAT) mediates the removal of released DA. DAT is the major molecular target responsible for the rewarding properties and abuse potential of the psychostimulant amphetamine (AMPH). AMPH has been shown to reduce the number of DATs at the cell surface, and this AMPH-induced cell surface DAT redistribution may result in long-lasting changes in DA homeostasis. The mole...
متن کاملHypoinsulinemia Regulates Amphetamine-Induced Reverse Transport of Dopamine
The behavioral effects of psychomotor stimulants such as amphetamine (AMPH) arise from their ability to elicit increases in extracellular dopamine (DA). These AMPH-induced increases are achieved by DA transporter (DAT)-mediated transmitter efflux. Recently, we have shown that AMPH self-administration is reduced in rats that have been depleted of insulin with the diabetogenic agent streptozotoci...
متن کاملAmphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism.
The dopamine transporter (DAT) is a target of amphetamine (AMPH) and cocaine. These psychostimulants attenuate DAT clearance efficiency, thereby increasing synaptic dopamine (DA) levels. Re-uptake rate is determined by the number of functional transporters at the cell surface as well as by their turnover rate. Here, we present evidence that DAT substrates, including AMPH and DA, cause internali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 68 1 شماره
صفحات -
تاریخ انتشار 2005