Poincaré Duality for K-theory of Equivariant Complex Projective Spaces
نویسنده
چکیده
We make explicit Poincaré duality for the equivariant K-theory of equivariant complex projective spaces. The case of the trivial group provides a new approach to the K-theory orientation [3].
منابع مشابه
Poincaré duality and periodicity
We construct periodic families of Poincaré spaces. This gives a partial solution to a question posed by Hodgson in the proceedings of the 1982 Northwestern homotopy theory conference. In producing these families, we formulate a recognition principle for Poincaré duality in the case of finite complexes having one top cell that splits of after a single suspension. We also explain how a Z-equivari...
متن کاملEquivariant K-theory, twisted Chern character, index pairings, Poincaré duality and orientation for the standard Podleś sphere
The noncommutative spin geometry of the standard Podleś sphere is analyzed and known results are extended by establishing Poincaré duality and orientability. In the discussion of orientability, Hochschild homology is replaced by a twisted version which avoids the dimension drop. The twisted Hochschild cycle representing an orientation is related to the volume form of the distinguished covariant...
متن کاملAlgebraic Cocycles on Normal, Quasi-Projective Varieties
Blaine Lawson and the author introduced algebraic cocycles on complex algebraic varieties in [FL-1] and established a duality theorem relating spaces of algebraic cocycles and spaces of algebraic cycles in [FL-2]. This theorem has non-trivial (and perhaps surprising) applications in several contexts. In particular, duality enables computations of “algebraic mapping spaces” consisting of algebra...
متن کاملRings of Singularities
This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...
متن کاملEQUIVARIANT SPECTRAL TRIPLES AND POINCARÉ DUALITY FOR SUq(2)
Let A be the C∗-algebra associated with SUq(2), let π be the representation by left multiplication on the L2 space of the Haar state and let D be the equivariant Dirac operator for this representation constructed by the authors earlier. We prove in this article that there is no operator other than the scalars in the commutant π(A)′ that has bounded commutator with D. This implies that the equiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007