Simultaneous Class Discovery and Classification of Microarray Data Using Spectral Analysis

نویسندگان

  • Peng Qiu
  • Sylvia K. Plevritis
چکیده

Classification methods are commonly divided into two categories: unsupervised and supervised. Unsupervised methods have the ability to discover new classes by grouping data into clusters or tree structures without using the class labels, but they carry the risk of producing noninterpretable results. On the other hand, supervised methods always find decision rules that discriminate samples with different class labels. However, the class label information plays such an important role that it confines supervised methods by defining the possible classes. Consequently, supervised methods do not have the ability to discover new classes. To overcome the limitations of unsupervised and supervised methods, we propose a new method, which utilizes the class labels to a less important role so as to perform class discovery and classification simultaneously. The proposed method is called SPACC (SPectral Analysis for Class discovery and Classification). In SPACC, the training samples are nodes of an undirected weighted network. Using spectral analysis, SPACC iteratively partitions the network into a top-down binary tree. Each partitioning step is unsupervised, and the class labels are only used to define the stopping criterion. When the partitioning ends, the training samples have been divided into several subsets, each corresponding to one class label. Because multiple subsets can correspond to the same class label, SPACC may identify biologically meaningful subclasses, and minimize the impact of outliers and mislabeled data. We demonstrate the effectiveness of SPACC for class discovery and classification on microarray data of lymphomas and leukemias. SPACC software is available at http://icbp.stanford.edu/software/SPACC/.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data

Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...

متن کامل

Robust DNA Microarray Clustering Techniques for Oncological Diagnosis

Machine learning techniques are increasingly popular tools for understanding complex biological data. Prior research has demonstrated the power of simple statistical clustering algorithms for disease class discovery and prediction. In this work we examine the efficacy of spectral and divisive clustering on gene expression microarray data. In particular we consider simultaneous expression cluste...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering

 Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computational biology : a journal of computational molecular cell biology

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2009