Detecting Emotion from EEG Signals Using the Emotive Epoc Device

نویسندگان

  • Rafael Ramirez
  • Zacharias Vamvakousis
چکیده

The study of emotions in human-computer interaction has increased in recent years in an attempt to address new user needs. At the same time, it is possible to record brain activity in real-time and discover patterns to relate it to emotional states. This paper describes a machine learning approach to detect emotion from brain activity, recorded as electroencephalograph (EEG) with the Emotic Epoc device, during auditory stimulation. First, we extract features from the EEG signals in order to characterize states of mind in the arousal-valence 2D emotion model. Using these features we apply machine learning techniques to classify EEG signals into high/low arousal and positive/negative valence emotional states. The obtained classifiers may be used to categorize emotions such as happiness, anger, sadness, and calm based on EEG data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Localization of Brand Social Responsibility Using EEG

Introduction: The purpose of this study was to investigate the neural effects of brand social responsibility (BSR) on consumer behavior. In the version of third marketing, consideration of the human spirit and its responsibility as a competitive strategy has been proposed. Materials and Methods: The investigation method was an exploratory-laboratory. Electrocardiographic instruments were used t...

متن کامل

Emotion Detection using EPOC EEG device

With successful classification of emotions we could get instant feedback from users and increase the potential of affective computing. In our approach, we aim to evaluate EEG device Emotiv EPOC and classify emotions from the data captured by this device. We proposed a method of emotion classification, which we evaluated on an existing dataset. The preliminary results show 37.72% accuracy of our...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

[Poster] An Affective Evaluation Tool Using Brain Signals

We propose a new interface evaluation tool that incorporates affective metrics wich are provided from the ElectroEncephaloGraphy (EEG) signals of the Emotiv EPOC neuro-headset device. The evaluation tool captures and analyzes information in real time from a multitude of sources such as EEG, facial expressions, and affective metrics such as frustration, engagement and excitement. The proposed to...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012