A meshless, high-order integral equation method for smooth surfaces, with application to biomolecular electrostatics
نویسنده
چکیده
In this thesis, we develop methods for efficient simulation of biomolecular electrostatics based on Poisson-Boltzmann equation. Current techniques using finite-difference solution of differential formulation have many drawbacks. We present an integral formulation that resolves these difficulties and enables an efficient implementation using a recently developed fast solver. The new approach can solve practical engineering problems with good accuracy, but only with an aid of a high quality mesh generator, and sometimes require a a large number of panels to discretize a surface. To this end, a novel approach to discretize singular integral equations is proposed. Unlike the traditional boundary element method using panel discretization, the new method is meshless and capable of achieving spectral convergence: numerical errors decrease exponentially fast with increasing size of basis set. We will describe a number of techniques in our approach, including the use of global, high order basis, quadrature-based panel integration, and innovative surface representation. The biomolecular problem is particularly suited for this method because molecular surfaces are typically smooth and can be represented globally using spherical harmonics. The use of flat panels in the traditional approach would incur significant geometrical distortion, in addition to much slower convergence rate. Computational results demonstrate that for a practical problem at engineering accuracy (a tolerance of 10−3) this new approach requires one to two orders of magnitude fewer unknowns than a flat panel method. For a more stringent tolerance of 10−6, a comparison to an analytically solvable problem reveals that an improvement more than three orders of magnitude has been achieved. Thesis Supervisor: Jacob K. White Title: Professor of Electrical Engineering and Computer Science Thesis Supervisor: Bruce Tidor Title: Professor of Biological Engineering and Computer Science
منابع مشابه
A Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملBuckling of Doubly Clamped Nano-Actuators in General form Through Spectral Meshless Radial Point Interpolation (SMRPI)
The present paper is devoted to the development of a kind of spectral meshless radial point interpolation (SMRPI) technique in order to obtain a reliable approximate solution for buckling of nano-actuators subject to different nonlinear forces. To end this aim, a general type of the governing equation for nano-actuators, containing integro-differential terms and nonlinear forces is considered. ...
متن کاملThree dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملAn order N algorithm for computation of electrostatic interactions in biomolecular systems
Poisson-Boltzmann (PB) electrostatics is a well established model in biophysics, however its application to large scale biomolecular processes such as protein-protein encounter is still limited by the efficiency and memory constraints of existing numerical techniques. In this paper, we present an efficient and accurate scheme which incorporates recently developed numerical techniques to enhance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006